Leta i Linköpings universitets forskning

På LiU E-Press har vi registrerat de flesta publikationer från LiU. Skriv några nyckelord, välj publikationstyp...

High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes
Article in journal
Baodan Zhao, Sai Bai, Vincent Kim, Robin Lamboll, Ravichandran Shivanna, Florian Auras, Johannes M. Richter, Le Yang, Linjie Dai, Mejd Alsari, Xiao-Jian She, Lusheng Liang, Jiangbin Zhang, Samuele Lilliu, Peng Gao, Henry J. Snaith, Jianpu Wang, Neil C. Greenham, Richard H. Friend, Dawei Di
Publication Year
Nature Photonics, 2018, (12)12, 783-+
Link to Source (DOI)
<p>Perovskite-based optoelectronic devices are gaining much attention owing to their remarkable performance and low processing cost, particularly for solar cells. However, for perovskite light-emitting diodes, non-radiative charge recombination has limited the electroluminescence efficiency. Here we demonstrate perovskite-polymer bulk heterostructure light-emitting diodes exhibiting external quantum efficiencies of up to 20.1% (at current densities of 0.1-1 mA cm(-2)). The light-emitting diode emissive layer comprises quasi-two-dimensional and three-dimensional (2D/3D) perovskites and an insulating polymer. Photogenerated excitations migrate from quasi-2D to lower-energy sites within 1 ps, followed by radiative bimolecular recombination in the 3D regions. From near-unity external photoluminescence quantum efficiencies and transient kinetics of the emissive layer with and without charge-transport contacts, we find non-radiative recombination pathways to be effectively eliminated, consistent with optical models giving near 100% internal quantum efficiencies. Although the device brightness and stability (T-50 = 46 h in air at peak external quantum efficiency) require further improvement, our results indicate the significant potential of perovskite-based photon sources.</p>