Leta i Linköpings universitets forskning

På LiU E-Press har vi registrerat de flesta publikationer från LiU. Skriv några nyckelord, välj publikationstyp...

Title
Role of Microstructure in Oxygen Induced Photodegradation of Methylammonium Lead Triiodide Perovskite Films
Article in journal
Authors
Qing Sun, Paul Fassl, David Becker-Koch, Alexandra Bausch, Boris Rivkin, Sai Bai, Paul E. Hopkinson, Henry J. Snaith, Yana Vaynzof
Publication Year
2017
Source
ADVANCED ENERGY MATERIALS, 2017, (7)20,
Link to Source (DOI)
10.1002/aenm.201700977
Abstract
<p>This paper investigates the impact of microstructure on the degradation rate of methylammonium lead triiodide (MAPbI(3)) perovskite films upon exposure to light and oxygen. By comparing the oxygen induced degradation of perovskite films of different microstructure-fabricated using either a lead acetate trihydrate precursor or a solvent engineering technique-it is demonstrated that films with larger and more uniform grains and better electronic quality show a significantly reduced degradation compared to films with smaller, more irregular grains. The effect of degradation on the optical, compositional, and microstructural properties of the perovskite layers is characterized and it is demonstrated that oxygen induced degradation is initiated at the layer surface and grain boundaries. It is found that under illumination, irreversible degradation can occur at oxygen levels as low as 1%, suggesting that degradation can commence already during the device fabrication stage. Finally, this work establishes that improved thin-film microstructure, with large uniform grains and a low density of defects, is a prerequisite for enhanced stability necessary in order to make MAPbI(3) a promising long lived and low cost alternative for future photovoltaic applications.</p>