Leta i Linköpings universitets forskning

På LiU E-Press har vi registrerat de flesta publikationer från LiU. Skriv några nyckelord, välj publikationstyp...

Title
Approximately 800-nm-Thick Pinhole-Free Perovskite Films via Facile Solvent Retarding Process for Efficient Planar Solar Cells
Article in journal
Authors
Zhongcheng Yuan, Yingguo Yang, Zhongwei Wu, Sai Bai, Weidong Xu, Tao Song, Xingyu Gao, Feng Gao, Baoquan Sun
Publication Year
2016
Source
ACS APPLIED MATERIALS and INTERFACES, 2016, (8)50, 34446-34454
Link to Source (DOI)
10.1021/acsami.6b12637
Abstract
<p>Device performance of organometal halide perovskite solar cells significantly depends on the quality and thickness of perovskite absorber films. However, conventional deposition methods often generate pinholes within similar to 300 nm-thick perovskite films, which are detrimental to the large area device manufacture. Here we demonstrated a simple solvent retarding process to deposit uniform pinhole free perovskite films with thicknesses up to similar to 800 nm. Solvent evaporation during the retarding process facilitated the components separation in the mixed halide perovskite precursors, and hence the final films exhibited pinhole free morphology and large grain sizes. In addition, the increased precursor concentration after solvent-retarding process led to thick perovskite films. Based on the uniform and thick perovskite films prepared by this convenient process, a champion device efficiency up to 16.8% was achieved. We believe that this simple deposition procedure for high quality perovskite films around micrometer thickness has a great potential in the application of large area perovskite solar cells and other optoelectronic devices.</p>