Article | Proceedings of The American Modelica Conference 2018, October 9-10, Somberg Conference Center, Cambridge MA, USA | Functional Mock-up Interface: An empirical survey identifies research challenges and current barriers Linköping University Electronic Press Conference Proceedings
Göm menyn

Functional Mock-up Interface: An empirical survey identifies research challenges and current barriers
Gerald Schweiger: Technical University of Graz, Graz, Austria Cláudio Gomes: University of Antwerp, Antwerp, Belgium Georg Engel: Technical University of Graz, Graz, Austria Irene Hafner: dwh GmbH - Simulation Services und Technical Solutions, Vienna, Austria Josef-Peter Schoegg: KTH Royal Institute of Technology, Stockholm, Sweden Alfred Posch: University of Graz, Graz, Austria Thierry Nouidui: Lawrence Berkeley National Laboratory, Berkeley, USA
Full text (pdf)
Proceedings of The American Modelica Conference 2018, October 9-10, Somberg Conference Center, Cambridge MA, USA
Article no.:
No. of pages:
Publication type:
Abstract and Fulltext
Linköping Electronic Conference Proceedings
ISSN (print):
ISSN (online):
Linköping University Electronic Press, Linköpings universitet

Export in BibTex, RIS or text

Co-simulation is a promising approach for the analysis of complex, multi-domain systems, that leverages mature simulation tools of the respective domains. It has been applied in many different disciplines in academia and industry, with limited sharing of findings. With the increasing adoption of the FMI standard, researchers have set to work on surveying the scattered knowledge on co-simulation in academia. This paper complements the existing surveys by taking on the social and empirical aspect, corroborating, and prioritizing, previous findings. We focus on understanding the perceived research challenges, and the current barriers, based on expert assessment. One of the main barriers pointed out is the limited support for discrete event and hybrid co-simulation.

Keywords: Co-Simulation, Functional Mock-Up Interface, Modelling

Proceedings of The American Modelica Conference 2018, October 9-10, Somberg Conference Center, Cambridge MA, USA

Gerald Schweiger, Cláudio Gomes, Georg Engel, Irene Hafner, Josef-Peter Schoegg, Alfred Posch, Thierry Nouidui
Functional Mock-up Interface: An empirical survey identifies research challenges and current barriers

Michael Adler and Erio Ziglio. Gazing Into the Oracle: The Delphi Method and Its Application to Social Policy and Public Health. Jessica Kingsley Publishers, London and Philadelphia, 1996.

Christian Andersson, Claus Führer, and Johan Åkesson. Efficient Predictor for Co-Simulation with Multistep Sub-System Solvers. Technical Report 1, 2016. URL

Ramya Balasubramanian and Deepti Agarwal. Delphi Technique- A Review. International Journal of Public Health Dentistry, 3(2):16–25, 2012. ISSN 17411645. URL

Christian Bertsch, Elmar Ahle, and Ulrich Schulmeister. The Functional Mockup Interface-seen from an industrial perspective. In 10th International Modelica Conference, 2014.

Torsten Blochwitz, Martin Otter, Martin Arnold, C Bausch, Christoph Clauss, Hilding Elmqvist, Andreas Junghanns, Jakob Mauss, M Monteiro, T Neidhold, Dietmar Neumerkel, Hans Olsson, J.-V. Peetz, and S Wolf. The Functional Mockup Interface for Tool independent Exchange of Simulation Models. In 8th International Modelica Conference, pages 105–114, Dresden, Germany, 6 2011. Linköping University Electronic Press; Linköpings universitet. doi:10.3384/ecp11063105.

Torsten Blockwitz, Martin Otter, Johan Akesson, Martin Arnold, Christoph Clauss, Hilding Elmqvist, Markus Friedrich, Andreas Junghanns, Jakob Mauss, Dietmar Neumerkel, Hans Olsson, and Antoine Viel. Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation Models. In 9th International Modelica Conference, pages 173–184, Munich, Germany, 11 2012. Linköping University Electronic Press. doi:10.3384/ecp12076173.

Jonathan Brembeck, Martin Otter, and Dirk Zimmer. Nonlinear Observers based on the Functional Mockup Interface with Applications to Electric Vehicles. Proceedings of the 8th International Modelica Conference, pages 474–483, 2011. doi:10.3384/ecp11063474. URL

David Broman, Christopher Brooks, Lev Greenberg, Edward A Lee, Michael Masin, Stavros Tripakis, and Michael Wetter. Determinate composition of FMUs for co-simulation. In Eleventh ACM International Conference on Embedded Software, page Article No. 2, Montreal, Quebec, Canada, 2013. IEEE Press Piscataway, NJ, USA. ISBN 978-1-4799-1443-2.

David Broman, Lev Greenberg, Edward A Lee, Michael Masin, Stavros Tripakis, and Michael Wetter. Requirements for Hybrid Cosimulation Standards. In 18th International Conference on Hybrid Systems: Computation and Control, HSCC ’15, pages 179–188, Seattle, Washington, 2015. ACM New York, NY, USA. ISBN 978-1-4503-3433-4. doi:10.1145/2728606.2728629.

Tilman Bünte, Lok Man Ho, Clemens Satzger, and Jonathan Brembeck. Central Vehicle Dynamics Control of the Robotic Research Platform RoboMobil. ATZelektronik worldwide, 9 (3):58–64, 6 2014. ISSN 2192-9092. doi:10.1365/s38314-014-0254-6. URL

Mark J Clayton. Delphi: a technique to harness expert opinion for critical decision-making tasks in education. Educational Psychology, 17(4):373–386, 1997. doi:10.1080/0144341970170401. URL

Fabio Cremona, Marten Lohstroh, Stavros Tripakis, Christopher Brooks, and Edward A Lee. FIDE: an FMI integrated development environment. In 31st Annual ACM Symposium on Applied Computing, SAC ’16, pages 1759–1766, Pisa, Italy, 2016. ACM New York, NY, USA. ISBN 9781450337397. doi:10.1145/2851613.2851677.

Fabio Cremona, Marten Lohstroh, David Broman, Edward A. Lee, Michael Masin, and Stavros Tripakis. Hybrid cosimulation: It’s about time. Software & Systems Modeling, November 2017a. ISSN 1619-1366, 1619-1374. doi:10.1007/s10270-017-0633-6.

Fabio Cremona, Marten Lohstroh, David Broman, Stavros Tripakis, Edward A Lee, and Michael Masin. Hybrid Co-simulation: It’s About Time. Technical report, Report No. UCB/EECS-2017-6, EECS Department, University of California, Berkeley, 2017b. URL

André L Delbecq, Andrew H Van de Ven, and David H Gustafson. Group techniques for program planning: A guide to nominal group and delphi processes. Scott-Foresman and Company, Glenview, Illinois, 1975.

Erik Durling, Elias Palmkvist, and Maria Henningsson. FMI and IP protection of models: A survey of use cases and support in the standard. In 12th International Modelica Conference, number 132, pages 329–335. Linköping University Electronic Press, 2017. ISBN 1650-3740.

Georg Engel, Ajay S. Chakkaravarthy, and Gerald Schweiger. A General Method to Compare Different Co-Simulation Interfaces: Demonstration on a Case Study. In Janusz Kacprzyk, editor, Simulation and Modeling Methodologies, Technologies and Applications, chapter 19. Springer, 2018. doi:10.1007/978-3-030-01470-4_19.

FMI. Functional Mock-up Interface for Model Exchange and Co-Simulation. Technical report, 2014. FMI. Functional Mock-up Interface, 2018. URL

Rûdiger Franke, Sven Erik Mattsson, Martin Otter, Karl Wernersson, Hans Olsson, Lennart Ochel, and Torsten Blochwitz. Discrete-time models for control applications with FMI. pages 507–515, July 2017. doi:10.3384/ecp17132507.

Cláudio Gomes, Yentl Van Tendeloo, Joachim Denil, Paul De Meulenaere, and Hans Vangheluwe. Hybrid System Modelling and Simulation with Dirac Deltas. Technical report, University of Antwerp, Antwerp, 2 2017. URL http: //

Cláudio Gomes, Bart Meyers, Joachim Denil, Casper Thule, Kenneth Lausdahl, Hans Vangheluwe, and Paul De Meulenaere. Semantic Adaptation for FMI Co-simulation with Hierarchical Simulators. SIMULATION, pages 1–29, 2018a. doi:10.1177/0037549718759775.

Cláudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, and Hans Vangheluwe. Co-simulation: a Survey. ACM Computing Surveys, 51(3):Article 49, 4 2018b. doi:10.1145/3179993.

Claire M. Goodman. The Delphi technique: a critique. Journal of Advanced Nursing, 12(6):729–734, 1987. ISSN 13652648. doi:10.1111/j.1365-2648.1987.tb01376.x.

Irene Hafner and Niki Popper. On the terminology and structuring of co-simulation methods. In Proceedings of the 8th International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools, pages 67–76, New York, New York, USA, 2017. ACM Press. ISBN 9781450363730. doi:10.1145/3158191.3158203. URL

Matthew R. Hallowell and John A. Gambatese. Qualitative Research: Application of the Delphi Method to CEM Research. Journal of Construction Engineering and Management, 136(1):99–107, 1 2010. ISSN 0733-9364. doi:10.1061/(ASCE)CO.1943-7862.0000137. URL

Thomas A Henzinger. The theory of hybrid automata. Springer, 2000. ISBN 3642640524.

Kim Quaile Hill and Jib Fowles. The methodological worth of the Delphi forecasting technique. Technological Forecasting and Social Change, 7(2):179–192, 1975. ISSN 0040-1625. doi: URL

Yutaka Hirano, Satoshi Shimada, Yoichi Teraoka, Osamu Seya, Yuji Ohsumi, Shintaroh Murakami, Tomohide Hirono, and Takayuki Sekisue. Initiatives for acausal model connection using FMI in JSAE (Society of Automotive Engineers of Japan). In Proceedings of the 11th International Modelica Conference, pages 795–801, 2015. doi:10.3384/ecp15118795. URL;article=85.

Chia-chien Hsu and Brian Sandford. The delphi technique: making sense of consensus. Practical Assessment, Research & Evaluation, 12(10):1–8, 2007. ISSN 1531-7714. doi:10.1016/S0169-2070(99)00018-7.

Jon Landeta. Current validity of the Delphi method in social sciences. Technological Forecasting and Social Change, 73(5):467–482, 2006. ISSN 00401625. doi:10.1016/j.techfore.2005.09.002.

Peter Gorm Larsen, John Fitzgerald, Jim Woodcock, Peter Fritzson, Jorg Brauer, Christian Kleijn, Thierry Lecomte, Markus Pfeil, Ole Green, Stylianos Basagiannis, and Andrey Sadovykh. Integrated tool chain for model-based design of Cyber-Physical Systems: The INTO-CPS project. In 2nd International Workshop on Modelling, Analysis, and Control of Complex CPS (CPS Data), pages 1–6, Vienna, Austria, 4 2016. IEEE. ISBN 978-1-5090-1154-4. doi:10.1109/CPSData.2016.7496424.

Harold A Linstone and Murray Turoff. The Delphi Method: Techniques and Applications. Technometrics, 18:363, 2002. ISSN 00401706. doi:10.2307/1268751.

Barbara Ludwig. Predicting the Future: Have you considered using the Delphi Methodology? Journal of Extension, 35(5):5TOT2, 1997. ISSN 10775315. doi:10.1161/CIRCULATIONAHA.111.023879. URL

Martin Nowack, Jan Endrikat, and Edeltraud Guenther. Review of Delphi-based scenario studies: Quality and design considerations. Technological Forecasting and Social Change, 78(9):1603–1615, 2011. ISSN 00401625. doi:10.1016/j.techfore.2011.03.006. URL

Chitu Okoli and Suzanne D Pawlowski. The Delphi method as a research tool : an example , design considerations and applications. Information & Management, 42(1):15–29, 2004. ISSN 03787206. doi:10.1016/ URL

Peter Palensky, Arjen A Van Der Meer, Claudio David Lopez, Arun Joseph, and Kaikai Pan. Cosimulation of Intelligent Power Systems: Fundamentals, Software Architecture, Numerics, and Coupling. IEEE Industrial Electronics Magazine, 11(1):34–50, 2017. ISSN 1932-4529. doi:10.1109/MIE.2016.2639825. URL

Catherine Powell. The Delphi Technique: myths and realities. Methodological Issues in Nursing Research, 41(4): 376–382, 2003. ISSN 0309-2402. doi:10.1046/j.1365-2648.2003.02537.x. URL

Claudius Ptolemaeus. System Design, Modeling, and Simulation: Using Ptolemy II. Berkeley:, 2014. ISBN 1304421066.

Lothar Sachs. Angewandte Statistik. Springer-Verlag, Berlin Heidelberg, 1997.

Per Sahlin and Alexey Lebedev. OPENCPS: Benchmark building and energy system models. Technical report, 2016.

Filippo Sanfilippo, Lars Ivar Hatledal, Kristin Ytterstad Pettersen, and Houxiang Zhang. A Benchmarking Framework for Control Methods of Maritime Cranes Based on the Functional Mockup Interface. IEEE Journal of Oceanic Engineering, 2018. ISSN 03649059. doi:10.1109/JOE.2017.2691920.

Gerald Schweiger, Cláudio Gomes, Georg Engel, Irene Hafner, Josef-Peter Schoeggl, Alfred Posch, and Thierry Stephane Nouidui. An Empirical Survey on Co-Simulation: Promising Standards, Challenges and Research Needs. Manuscript submitted for publication, 2018a.

Gerald Schweiger, Richard Heimrath, Basak Falay, Keith ODonovan, Peter Nageler, Reinhard Pertschy, Georg Engel, Wolfgang Streicher, and Ingo Leusbrock. District Energy Systems: Modelling paradigms and general-purpose tools. Energy, 2018b.

Jerry Somerville. Critical Factors Affecting the Assessment of Student Learning Outcomes: A Delphi Study of the Opinions of Community College Personnel. Journal of Applied Research in the Community College, 15(2):109–119, 2008. ISSN 1068-610X.

Pei-Chen Sun, Ray J Tsai, Glenn Finger, Yueh-Yang Chen, and Dowming Yeh. What drives a successful e-Learning? An empirical investigation of the critical factors influencing learner satisfaction. Computers & Education, 50(4):1183–1202, 2008. ISSN 0360-1315. doi: URL

Zhendong Sun. Switched linear systems: control and design. Springer Science & Business Media, 2006. ISBN 1846281318.

Casper Thule, Cláudio Gomes, Julien Deantoni, Peter Gorm Larsen, Jörg Brauer, and Hans Vangheluwe. Towards Verification of Hybrid Co-simulation Algorithms. In 2ndWorkshop on Formal Co-Simulation of Cyber-Physical Systems, page to be published, Toulouse, France, 2018. Springer, Cham.

Marija Trcka, Michael Wetter, and Jan Hensen. Comparison of co-simulation approaches for building and HVAC/R system simulation. In International IBPSA Conference, Beijing, China, 2007.

Herman Van der Auweraer, Jan Anthonis, Stijn De Bruyne, and Jan Leuridan. Virtual engineering at work: the challenges for designing mechatronic products. Engineering with Computers, 29(3):389–408, 2013. ISSN 0177-0667. doi:10.1007/s00366-012-0286-6.

Hans Vangheluwe. Foundations of Modelling and Simulation of Complex Systems. Electronic Communications of the EASST, 10, 2008. doi:10.14279/tuj.eceasst.10.162.148.

Hans Vangheluwe, Juan De Lara, and Pieter J Mosterman. An introduction to multi-paradigm modelling and simulation. In AI, Simulation and Planning in High Autonomy Systems, pages 9–20. SCS, 2002.

Thierry Volery and Deborah Lord. Critical success factors in online education. International Journal of Educational Management, 14(5):216–223, 9 2000. ISSN 0951-354X. doi:10.1108/09513540010344731. URL

Fu Zhang, Murali Yeddanapudi, and Pieter J Mosterman. Zero-Crossing Location and Detection Algorithms For Hybrid System Simulation. In IFAC Proceedings Volumes, volume 41, pages 7967–7972, Seoul, Korea, 7 2008. Elsevier Ltd. doi:10.3182/20080706-5-KR-1001.01346. URL

Proceedings of The American Modelica Conference 2018, October 9-10, Somberg Conference Center, Cambridge MA, USA

Gerald Schweiger, Cláudio Gomes, Georg Engel, Irene Hafner, Josef-Peter Schoegg, Alfred Posch, Thierry Nouidui
Functional Mock-up Interface: An empirical survey identifies research challenges and current barriers
Note: the following are taken directly from CrossRef
No citations available at the moment

Responsible for this page: Peter Berkesand
Last updated: 2019-06-04