Keywords: fragmented care, triple aim, data reuse, patient experience
Proceedings from The 14th Scandinavian Conference on Health Informatics 2016, Gothenburg, Sweden, April 6-7 2016
[1] Balas E, Boren S. Managing clinical knowledge for health care improvement. Yearb. Med. Inform. 2000 Patient-Centered Syst., Schattauer Verlagsgesellschaft mbH; 2000, p. 65–70.
[2] Morris ZS, Wooding S, Grant J. The answer is 17 years, what is the question: understanding time lags in translational research. J R Soc Med 2011;104:510–20. doi: 10.1258/jrsm.2011.110180.
[3] Institute of Medicine (US) Roundtable on Evidence-Based Medicine. The Learning Healthcare System: Workshop Summary. Washington (DC): National Academies Press (US); 2007.
[4] Berwick DM, Nolan TW, Whittington J. The Triple Aim: Care, Health, And Cost. Health Aff (Millwood) 2008;27:759–69. doi: 10.1377/hlthaff.27.3.759.
[5] Ohno-Machado L, Agha Z, Bell DS, Dahm L, Day ME, Doctor JN, et al. pSCANNER: patient-centered Scalable National Network for Effectiveness Research. J Am Med Inform Assoc JAMIA 2014;21:621–6. doi: 10.1136/amiajnl-2014-002751.
[6] Sledge GW, Hudis CA, Swain SM, Yu PM, Mann JT, Hauser RS, et al. ASCO’s approach to a learning health care system in oncology. J Oncol Pract Am Soc Clin Oncol 2013;9:145–8. doi: 10.1200/JOP.2013.000957.
[7] Deeny SR, Steventon A. Making sense of the shadows: priorities for creating a learning healthcare system based on routinely collected data. BMJ Qual Saf 2015;24:505–15. doi: 10.1136/bmjqs-2015-004278.
[8] Abernethy AP, Ahmad A, Zafar SY, Wheeler JL, Reese JB, Lyerly HK. Electronic patient-reported data capture as a foundation of rapid learning cancer care. Med Care 2010;48:S32–8. doi: 10.1097/MLR.0b013e3181db53a4.
[9] Berntsen G, Høyem A, Gammon D. Helsetjenesten fra pasientens ståsted. 2014.
[10] Marco-Ruiz L, Moner D, Maldonado JA, Kolstrup N, Bellika JG. Archetype-based data warehouse environment to enable the reuse of electronic health record data. Int J Med Inf 2015;84:702–14. doi: 10.1016/j.ijmedinf.2015.05.016.
[11] Bellika JG, Henriksen TS, Yigzaw KY. The Snow system - a decentralized medical data processing system. In: Llatas CF, GarcĂa-GĂłmez JM, editors. Data Min. Clin. Med., Springer; 2014.
[12] Yigzaw KY, Bellika JG, Andersen A, Hartvigsen G, Fernandez-Llatas C. Towards privacy-preserving computing on distributed electronic health record data, ACM Press; 2013, p. 1–6. doi: 10.1145/2541534.2541593.
[13] Maldonado JA, Moner D, Boscá D, Fernández-Breis JT, Angulo C, Robles M. LinkEHR-Ed: a multi-reference model archetype editor based on formal semantics. Int J Med Inf 2009;78:559–70. doi: 10.1016/j.ijmedinf.2009.03.006.
[14] Archetype Query Language n.d. http://www.openehr.org/wiki/display/spec/Archetype+Query+Language+Description.
[15] Garde S, Chen R, Leslie H, Beale T, McNicoll I, Heard S. Archetype-based knowledge management for semantic interoperability of electronic health records. Stud Health Technol Inform 2009;150:1007–11.
[16] Helse-og omsorgsdepartementet. Digitale tjenester i helse- og omsorgssektoren. Regjeringen.no 2012. http://www.regjeringen.no/nb/dokumenter/meld-st-9-20122013/id708609/ (accessed January 30, 2015).
[17] Direktoratet for e-helse. Utredning av «Én innbygger – én journal». Direktoratet for e-helse; 2015.
[18] Damiani G, Pinnarelli L, Colosimo SC, Almiento R, Sicuro L, Galasso R, et al. The effectiveness of computerized clinical guidelines in the process of care: a systematic review. BMC Health Serv Res 2010;10:2. doi: 10.1186/1472-6963-10-2.
[19] Jeffery R, Iserman E, Haynes RB, CDSS Systematic Review Team. Can computerized clinical decision support systems improve diabetes management? A systematic review and meta-analysis. Diabet Med J Br Diabet Assoc 2013;30:739–45. doi: 10.1111/dme.12087.