Article | Proceedings of the 56th Conference on Simulation and Modelling (SIMS 56), October, 7-9, 2015, Linköping University, Sweden | Numerical Investigation of Single-phase Fully Developed Heat Transfer and Pressure Loss in Spirally Corrugated Tubes
Göm menyn

Title:
Numerical Investigation of Single-phase Fully Developed Heat Transfer and Pressure Loss in Spirally Corrugated Tubes
Author:
Jakob Hærvig: Department of Energy Technology, Aalborg University, 9220-Aalborg, Denmark Thomas Condra: Department of Energy Technology, Aalborg University, 9220-Aalborg, Denmark Kim Sørensen: Department of Energy Technology, Aalborg University, 9220-Aalborg, Denmark
DOI:
10.3384/ecp15119391
Download:
Full text (pdf)
Year:
2015
Conference:
Proceedings of the 56th Conference on Simulation and Modelling (SIMS 56), October, 7-9, 2015, Linköping University, Sweden
Issue:
119
Article no.:
040
Pages:
391-397
No. of pages:
7
Publication type:
Abstract and Fulltext
Published:
2015-11-25
ISBN:
978-91-7685-900-1
Series:
Linköping Electronic Conference Proceedings
ISSN (print):
1650-3686
ISSN (online):
1650-3740
Publisher:
Linköping University Electronic Press, Linköpings universitet


Export in BibTex, RIS or text

A numerical study is carried out to investigate heat transfer and friction argumentation in spirally corrugated tubes. 28 geometrically different tubes are investigated to cover a large set of different corrugation characteristics. The pipes investigated have pitch lengths $l/D$ in the range 0 to 2.0 and pitch heights $h/D$ in the range 0 to 0.16. Furthermore, the flow conditions defined by the Reynolds number are investigated for $\text{Re}=5000$ and $\text{Re}=10000$, resulting in a total of 56 Computational Fluid Dynamics (CFD) simulations . The performance of the heat exchangers are evaluated based on the Nusselt number, friction factor, and performance evaluation criterion coefficient combining the two into a single unique dimensionless parameter. The results suggest corrugation to be an effective way to increase the performance of tube heat exchangers. If only heat transfer is considered without paying attention to pressure loss, the optimal tubes have high corrugation heights, where the Nusselt number can be increased by a factor of 2 compared to the non-corrugated tube. If the performance evaluation criterion is used, the optimal geometry has a moderate corrugation height $h/D$ between 0.05 and 0.10 and a low corrugation length $l/D$ around 1.0, which can be explained by a high increase in pressure loss due to severe corrugation.

Keywords: Stream-wise periodic boundaries; Heat transfer; Pressure loss; 3D CFD simulations; Parameter variation; Fully-developed flow

Proceedings of the 56th Conference on Simulation and Modelling (SIMS 56), October, 7-9, 2015, Linköping University, Sweden

Author:
Jakob Hærvig, Thomas Condra, Kim Sørensen
Title:
Numerical Investigation of Single-phase Fully Developed Heat Transfer and Pressure Loss in Spirally Corrugated Tubes
DOI:
http://dx.doi.org/10.3384/ecp15119391
References:

G.K. Filonenko. Hydraulischer widerstand von rohrleitungen. Teploenergetika, 1:1098‚Äď1099, 1960.


S. Ganeshan and M. Rajo Rao. Studies on thermohydraulics of single- and multi-start spirally corrugated tubes for water and time-independent power law fluids. International Journal of Heat and Mass Transfer, 25:1013‚Äď1022, 1982. URL http://dx.doi.org/10.1016/0017-9310(82)90076-X.


V. Gnielinski. New equations for heat and mass transfer in turbulent pipe and channel flow. Int. Chem. Eng, 16: 359‚Äď368, 1976. URL http://dx.doi.org/10.1007/ BF02559682.


W. Hufschmidt and E. Burck. Der einfluss temperaturabh√§ngiger stoffwerte auf den w√§rme√ľbergang bei turbulenter str√∂mung von fl√ľssigkeiten in rohren bei hohen w√§rmestromdichten und prandtlzahlen. Int. J. Heat Mass Transfer, 11:1041‚Äď1104, 1968. URL http://dx.doi.org/10.1016/0017-9310(68)90009-4.


Zaid S. Kareem, M. N. Mohd Jaafar, Tholudin M. Lazim, Shahrir Abdullah, and Ammar F. Abdulwahid. Passive heat transfer enhancement review in corrugation. Experimental Thermal and Fluid Science, 68:22‚Äď38, 2015. URL http://dx.doi.org/10.1016/j.expthermflusci.2015.04.012.


F. R. Menter. Improved two-equation k-omega turbulence models for aerodynamic flows. Technical report, National Aeronautics and Space Administration, 1992.


F. R. Menter, R. Langtry, and S. V√∂lker. Transition modelling for general purpose cfd codes. Flow Turbulence Combust, 77: 277‚Äď303, 2006. URL http://dx.doi.org/10.1007/s10494-006-9047-1.


S. V. Patankar, C. H. Liu, and E. M. Sparrow. Fully developed flow and heat transfer in ducts having streamwise-periodic variations of cross-sectional area. Journal of Heat Trans- fer, 99:180‚Äď186, 1977. URL http://dx.doi.org/10.1115/1.3450666.


P. G. Vicente, A. Garc√≠a, and A. Viedma. Experimental investigation on heat transfer and frictional characteristics of spirally corrugated tubes in turbulent flow at different prandtl numbers. International Journal of Heat and Mass Transfer, 47:671‚Äď681, 2004. URL http://dx.doi.org/10.1016/j.ijheatmasstransfer.2003.08.005.


V.V. Yakovlev. Ortliche und mittlere warmeubetragung bei turbulenter rohrstromung nichtsiedenden wassers und hohen warmebelastungen. Kernenergie, 3:1098‚Äď1099, 1960.


V. D. Zimparov, N. L. Vulchanov, and L. B. Delov. Heat transfer and friction characteristics of spirally corrugated tubes for power plant condensers ‚ÄĒ 1. experimental investigation and performance evaluation. International Journal of Heat and Mass Transfer, 34:2187‚Äď2197, 1991. URL http://dx.doi.org/10.1016/0017-310(91)90045-G.

Proceedings of the 56th Conference on Simulation and Modelling (SIMS 56), October, 7-9, 2015, Linköping University, Sweden

Author:
Jakob Hærvig, Thomas Condra, Kim Sørensen
Title:
Numerical Investigation of Single-phase Fully Developed Heat Transfer and Pressure Loss in Spirally Corrugated Tubes
DOI:
http://dx.doi.org/10.3384/ecp15119391
Note: the following are taken directly from CrossRef
Citations:
No citations available at the moment


Responsible for this page: Peter Berkesand
Last updated: 2017-02-21