*Bernt Lie*: Telemark University College, Porsgrunn, Norway

**Keywords:**Building model; Dynamics; Simulation; Water storage model; Ventilation heat integration

## Proceedings of the 56th Conference on Simulation and Modelling (SIMS 56), October, 7-9, 2015, Linköping University, Sweden

[1] Arachchige, D.D.K. (2014). An Approach to Day Ahead Forecasting of Solar Irradiance with an Application to Energy Gain in Solar Thermal Collectors. M.Sc. thesis, University of Agder, Faculty of Engineering and Science, Grimstad.

[2] Bayón, R., and Rojas, E. (2013). “Simulation of thermocline storage for solar thermal power plants: From dimensionless results to prototypes and real-size tanks”. International Journal of Heat and Mass Transfer, Vol. 60, pp. 713–721. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.01.047.

[3] Defra (2008). Measurement of Domestic Hot Water Consumption in Dwellings. Department for Environment, Food and Rural Affairs (Defra), UK.

[4] de Oliveira , V., Jäschke, J., and Skogestad, S. (2013). “Dynamic online optimization of a house heating system in a fluctuating energy price scenario”. Preprints of the 10th IFAC International Symposium on Dynamics and Control of Process Systems, The International Federation of Automatic Control, December 18-20, 2013, Mumbai, India, pp. 463—468.

[5] Duffie, J.A., and Beckman, W.A. (2013). Solar Engineering of Thermal Processes, 4th edition. JohnWiley& Sons, Hoboken, NJ.

[6] Durão, B., Joyce, A., Farinha Mendes, J. (2014). “Optimization of a seasonal storage solar system using Genetic Algorithms”. Solar Energy, Vol. 101, pp. 160– 166.

[7] Eicker, U. (2014). Energy Efficient Buildings with Solar and Geothermal Resources. John Wiley & Sons Ltd., Chichester, UK. ISBN 9781118352243.

[8] Han, Y.M., Wang, R.Z., and Dai, Y.J. (2009). “Thermal stratification within the water tank”. Renewable and Sustainable Energy Reviews, Vol. 13, pp. 1014– 1026. doi: 10.1016/j.rser.2008.03.001.

[9] Cheng Hin, J.N., and Zmeureanu, R. (2014). “Optimization of a residential solar combisystem for minimum life cycle cost, energy use and exergy destroyed”. Solar Energy, Vol. 100, pp. 102–113.

[10] Holth, E. (2009). Model Predictive Control of mixed solar and electric heating. MSc thesis, NTNU, Norway.

[11] Jordan, U., and Vajen, K. (2000). “Influence of the DHW load profile on the fractional energy savings: a case study of a solar combi-system with trnsys simulations”. Solar Energy, Vol. 69, Nos. 1–6, pp. 197-208.

[12] Kratzenberg, M.G., Beyer, H.G., and Colle, S. (2006). “Uncertainty calculation applied to different regression methods in the quasi-dynamic collector test”. Solar Energy, Vol. 80, pp. 1453–1462

[13] Lie, B., Pfeiffer, C., Skeie, N.-O., Beyer, H.-G. (2014). “Models for Solar Heating of Buildings”. Proceedings, 55th International Conference of Scandinavian Simulation Society (SIMS 2014), October 21-22 2014, Aalborg University, Denmark. Published by Linköping Electronic Press, www.ep.liu.se/ecp/108/ecp14108.pdf, pp. 28–38

[14] Lie, B., Pfeiffer, C., Beyer, H.-G. (2014). “Using history based irradiance forecasts for supporting the predictive control of solar thermal systems”. Proceedings, EuroSun 2014, September 16– 19, Aix-les-Bains, France.

[15] Perera., D.W.U., Pfeiffer, C., and Skeie, N.-O. (2014). “Modelling the heat dynamics of a residential building unit: Application to Norwegian buildings”. Modeling, Identication and Control, Vol. 35, No. 1, pp. 43–57, ISSN 1890-1328. doi: 10.4173/mic.2014.1.4.

[16] Perera., D.W.U., Pfeiffer, C., and Skeie, N.-O. (2014). “Modeling and simulation of multi zone buildings for better control”. Proceedings, SIMS 2014, Aalborg, Denmark, October 21–22, 2014.

[17] Pichler, M.F., Lerch, W., Heinz, A., Goertler, G., Schranzhofer, H., Rieberer, R. (2014). “A novel linear predictive control approach for auxiliary energy supply to a solar thermal combistorage”. Solar Energy, Vol. 101, pp. 203–219.

[18] Powell , K.M., and Edgar, T.F. (2012). “Modeling and control of a solar thermal power plant with thermal energy storage”. Chemical Engineering Science, Vol.

71, pp. 138–145.

[19] Powell , K.M., and Edgar, T.F. (2013). “An adaptivegrid model for dynamic simulation of thermocline thermal energy storage systems”. Energy Conversion and Management, Vol. 76, pp. 865–873. http://dx.doi.org/10.1016/j.enconman.2013.08.043.

[20] Saleh, A.M. (2012). Modeling of Flat-Plate Solar Collector Operation in Transient States. M.Sc. thesis, Purdue University, Indiana.

[21] Zima,W., and Dziewa, P. (2010). “Mathematical modelling of heat transfer in liquid flat-plate solar collector tubes”. Archives of Thermodynamics, Vol. 31, No. 2, pp. 45—62. doi: 10.2478/v10173-010-0008-7.