Article | Proceedings of the 56th Conference on Simulation and Modelling (SIMS 56), October, 7-9, 2015, Linköping University, Sweden | Recursive Dynamic Modelling in Changing Operating Conditions
Göm menyn

Title:
Recursive Dynamic Modelling in Changing Operating Conditions
Author:
Esko K. Juuso: Control Engineering Group, Faculty of Technology, University of Oulu, Finland
DOI:
10.3384/ecp15119169
Download:
Full text (pdf)
Year:
2015
Conference:
Proceedings of the 56th Conference on Simulation and Modelling (SIMS 56), October, 7-9, 2015, Linköping University, Sweden
Issue:
119
Article no.:
017
Pages:
169-174
No. of pages:
6
Publication type:
Abstract and Fulltext
Published:
2015-11-25
ISBN:
978-91-7685-900-1
Series:
Linköping Electronic Conference Proceedings
ISSN (print):
1650-3686
ISSN (online):
1650-3740
Publisher:
Linköping University Electronic Press, Linköpings universitet


Export in BibTex, RIS or text

Changing operating condition may require updates for the dynamic models. Recursive updates are needed when there are not sufficient information about the new situations. In machine diagnostics and prognostics, the analysis starts from good conditions and new phenomena, which activate with time, may change considerably the model. In biological wastewater treatment processes, the condition of the biomass changes drastically the dynamic operation of the treatment process. Direct measurements of the biomass condition are under development. Recursive modelling is clearly needed in these situations. The usual approachis to modify the model equations. However, the interactions do not necessarily change if the meanings of the variables are modified. This paper keeps the the model equations constant and modifies the nonlinear scaling of the variables by extending the data-driven scaling to recursive approach. The recursive methodology is tested in two applications: machine diagnostics and wastewater treatment.

Keywords: intelligent modelling; recursive statistical analysis; adaptive modelling; prognostics; transitions

Proceedings of the 56th Conference on Simulation and Modelling (SIMS 56), October, 7-9, 2015, Linköping University, Sweden

Author:
Esko K. Juuso
Title:
Recursive Dynamic Modelling in Changing Operating Conditions
DOI:
http://dx.doi.org/10.3384/ecp15119169
References:

R. BabuŇ°ka and H. Verbruggen. Neuro-fuzzy methods for nonlinear system identification. Annual Reviews in Control, 27 (1):73‚Äď85, 2003.


R. A. Collacott. Mechanical Fault Diagnosis and Condition Monitoring. Chapman and Hall, London, 1977.


J. L. Elman. Finding structure in time. Cognitive Science, 14(2): 179‚Äď211, 1990.


M. Heikkinen, T. Heikkinen, and Y. Hiltunen. Modelling of activated sludge treatment process in a pulp mill using neural networks. In The 6th International Conference on Computing, Communications and Control Technologies: CCCT 2008, Orlando, Florida, USA, June 29th - July 2nd 2008., page 6 pp. 2008a.


M. Heikkinen, T. Latvala, E. Juuso, and Y. Hiltunen. SOM based modelling for an activated sludge treatment process. In Tenth International Conference on Computer Modelling and Simulation, EUROSIM/UKSim, Cambridge, UK, April 13, 2008., pages 224‚Äď229. The Institute of Electrical and Electronics Engineers IEEE, 2008b. doi: 10.1109/UKSIM.2008.78.


A. Heng, A. C. C. Tan, J. Mathew, N. Montgomery, D. Banjevic., and A. K. S. Jardine. ‚Äėintelligent condition-based prediction of machinery reliability. Mechanical Systems and Signal Processing, 23(5):1600‚Äď1614, 2009.


M. Henze, C. P. L. Grady Jr., W. Gujer, G. V. R. Marais, and T. Matsuo. Activated sludge model no. 1., IAWQ scientific and technical report no. 1. London, UK, 1987.


A. K. S. Jardine, D. Lin, and D. Banjevic. A review on machinery diagnostics and prognostics implementing conditionbased maintenance. Mechanical Systems and Signal Processing, 20(7):1483‚Äď1510, 2006.


E. Juuso and S. Lahdelma. Intelligent scaling of features in fault diagnosis. In 7th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies, CM 2010 - MFPT 2010, 22-24 June 2010, Stratford-upon-Avon, UK, volume 2, pages 1358‚Äď1372, 2010. URL www.scopus.com.


E. K. Juuso. Integration of intelligent systems in development of smart adaptive systems. International Journal of Approximate Reasoning, 35(3):307‚Äď337, 2004. doi:
10.1016/j.ijar.2003.08.008.


E. K. Juuso. Hybrid models in dynamic simulation of a biological water treatment process. In J. Kunovsk√Ĺ, P. Han√°cek, F. Zboril, Al-Dabass, and A. Abraham, editors, Proceedings First International Conference on Computational Intelligence, Modelling and Simulation, 7- 9 September 2009, Brno, Czech Republik, pages 30‚Äď35. IEEE Computer Society, 2009a. doi: 10.1109/CSSim.2009.52.


E. K. Juuso. Tuning of large-scale linguistic equation (LE) models with genetic algorithms. In M. Kolehmainen, editor, Revised selected papers of the International Conference on Adaptive and Natural Computing Algorithms - ICANNGA 2009, Kuopio, Finland, Lecture Notes in Computer Science, volume LNCS 5495, pages 161‚Äď170. Springer-Verlag, Heidelberg, 2009b. doi: 10.1007/978-3-642-04921-7_17.


E. K. Juuso. Data-based development of dynamic models for biological wastewater treatment in pulp and paper industry. In SIMS 2010 Proceedings, The 51st Conference on Modelling and Simulation, Oulu, 14-15 October, 2010. 2010. 9 pp.


E. K. Juuso. Recursive tuning of intelligent controllers of solar collector fields in changing operating conditions. In S. Bittani, A. Cenedese, and S. Zampieri, editors, Proceedings of the 18th World Congress The International Federation of Automatic Control, Milano (Italy) August 28 - September 2, 2011, pages 12282‚Äď12288. IFAC, 2011. doi: 10.3182/20110828-6-IT-1002.03621.


E. K. Juuso, J.C. Bennavail, and M.G. Singh. Hybrid knowledge-based system for managerial decision making in uncertainty environment. In N. Piera Carret√© and M. G. Singh, editors, Qualitative Reasoning and Decision Technologies, Proceedings of the IMACS International Workshop on Qualitative Reasoning and Decision Technologies-QUARDET‚Äô93, Barcelona, June 16 - 18, 1993, pages 234‚Äď243, Barcelona, 1993. CIMNE.


A. B. Kaufman. ‚Äėmeasure machine vibration ‚Äď it can help you anticipate and prevent failures. INSTRUMENTS & CONTROL SYSTEMS, 48:50‚Äď62, 1975.


S. Lahdelma and E. Juuso. Trend analysis in condition monitoring of process equipments. In Proceedings of the 8th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies, CM 2011 - MFPT 2011, 20-22 June 2011, Cardiff, UK, volume 2, pages 904‚Äď913. Curran Associates, NY, USA, 2011. ISBN 978-1-61839-014-1.


E. Lindblom. Dynamic modelling of nutrient deficient wastewater treatment process. M.Sc. Thesis. Lund University, Lund, Sweden, 2003. TEIE-5175.


L. Ljung. System Identification - Theory for the User. Prentice Hall, Upper Saddle River, N.J., 2nd edition, 1999.


S.-P. Mujunen, P. Minkkinen, P. Teppola, and R.-S. Wirkkala. Modeling of activated sludge plants treatment efficiency with PLSR: a process analytical case study. Chemometrics and Intelligent Laboratory Systems, 41(1):83‚Äď94, 1998.


K. P. Oliveira-Esquerre, M. Mori, and R. E. Bruns. Simulation of an industrial wastewater treatment plant using artificial neural networks and principal component analysis. Brazilian Journal of Chemical Engineering, 19(4):365‚Äď370, 2002.


T. S. Sankar and G. D. Xistris. Measure machine vibrations - It can help you anticipate and prevent failures. Journal of Engineering for Industry, 94:133‚Äď137, 1972.


P. Teppola, S.-P. Mujunen, and P. Minkkinen. Partial least squares modeling of an activated sludge plant: A case study. Chemometrics and Intelligent Laboratory Systems, 38(2): 197‚Äď208, 1997.


J. Tomperi, E. Koivuranta, A. Kuokkanen, E. K. Juuso, and K. Leivisk√§. Real-time optical monitoring of the wastewater treatment process. Environmental Technology, pages 1‚Äď8, 2015. doi: 10.1080/09593330.2015.1069898.

Proceedings of the 56th Conference on Simulation and Modelling (SIMS 56), October, 7-9, 2015, Linköping University, Sweden

Author:
Esko K. Juuso
Title:
Recursive Dynamic Modelling in Changing Operating Conditions
DOI:
http://dx.doi.org/10.3384/ecp15119169
Note: the following are taken directly from CrossRef
Citations:
No citations available at the moment


Responsible for this page: Peter Berkesand
Last updated: 2017-02-21