Article | Proceedings of the 56th Conference on Simulation and Modelling (SIMS 56), October, 7-9, 2015, Linköping University, Sweden | Simulation of improved absorption configurations for CO2 capture
Göm menyn

Title:
Simulation of improved absorption configurations for CO2 capture
Author:
Solomon Aforkoghene Aromada: Department of and Process, Energy and Environmental Technology, Telemark University College, Norway Lars Øi: Department of and Process, Energy and Environmental Technology, Telemark University College, Norway
DOI:
10.3384/ecp1511921
Download:
Full text (pdf)
Year:
2015
Conference:
Proceedings of the 56th Conference on Simulation and Modelling (SIMS 56), October, 7-9, 2015, Linköping University, Sweden
Issue:
119
Article no.:
002
Pages:
21-29
No. of pages:
9
Publication type:
Abstract and Fulltext
Published:
2015-11-25
ISBN:
978-91-7685-900-1
Series:
Linköping Electronic Conference Proceedings
ISSN (print):
1650-3686
ISSN (online):
1650-3740
Publisher:
Linköping University Electronic Press, Linköpings universitet


Export in BibTex, RIS or text

The most well-known technology for post combustion CO2 capture from exhaust gas is absorption in an amine-based solvent followed by desorption. The drawback of this method is the high heat consumption required for desorption. Reduction of the energy consumption can be achieved by using alternative configurations. In this work, the standard process, vapour recompression and vapour recompression combined with split-stream configurations have been simulated using Aspen HYSYS version 8.0 for 85% amine-based CO2 removal in search for optimum process. Energy optimisation has also been performed by varying the most important parameters. This study shows that it is possible to reduce energy consumption with both the vapour recompression and the vapour recompression combined with split-stream processes. The vapour recompression process has been calculated to be the energy optimum alternative among the configurations investigated.

Keywords: CO2 Capture; Aspen HYSYS; Absorption; Simulation; Optimisation; Vapour recompression

Proceedings of the 56th Conference on Simulation and Modelling (SIMS 56), October, 7-9, 2015, Linköping University, Sweden

Author:
Solomon Aforkoghene Aromada, Lars Øi
Title:
Simulation of improved absorption configurations for CO2 capture
DOI:
http://dx.doi.org/10.3384/ecp1511921
References:

Aroonwilas, A., Veawab, A. (2006). Cost structure and performance of CO2 capture unit using split-stream cycle. Paper presented at the 8th International Conference on Greenhouse Gas Control Technologies (GHGT-8), Trondheim, Norway.


Cousins, A., Wardhaugh, L. T., & Feron, P. H. M. (2011). Preliminary analysis of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption. Chemical Engineering Research and Design, 89(8), 1237-1251. doi: http://dx.doi.org/10.1016/j.cherd.2011.02.008


Cousins, A., Wardhaugh, L. T., & Feron, P. H. M. (2011). A survey of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption. International Journal of Greenhouse Gas Control, 5(4), 605-619. doi: http://dx.doi.org/10.1016/j.ijggc.2011.01.002


Fernandez, E. S., Bergsma, E.J., de Miguel Mercader, F, Goetheer, E.L.V., Vlugt, T.J.H. (2012). Optimisation of lean vapour compression LVC as an OPTION for postcombustion CO2 capture: Net present value maximisation. International Journal of Greenhouse Gas Control, 11, 114-121. doi: http://dx.doi.org/10.1016/j.ijggc.2012.09.007


Jordal, K., Ystad, P.A.M., Anantharaman, R., Chikukwa, A., Bolland, O. (2012). Design-point and part-load considerations for natural gas combined cycle plants with post combustion capture. International Journal of Greenhouse Gas Control, 11, 271-282.


Karimi, M., Hillestad, M., & Svendsen, H. F. (2011). Capital costs and energy considerations of different alternative stripper configurations for post combustion CO2 capture. Chemical Engineering Research and Design, 89(8), 1229-1236. doi: http://dx.doi.org/10.1016/j.cherd.2011.03.005


Kent, R. L., Eisenberg, B. (1976). Better data for amine treating. Hydrocarbon processing, 55(No.2), 87-90.


Kohl, A., Nielsen, R. (1997). Gas Purification (5th ed. ed.). Houston, Texas: Gulf Publications.


Kothandaraman, A. (2010). Capture by chemical absorption: a solvent comparison study. (PhD PhD Thesis), Massachusetts Institute of Technology, Boston.


Kvam, S. H. P. (2013). Vapour recompression in absorption and desorption process for CO2 capture. (Master of Science), Telemark University College, Porsgrunn, Norway.


Le Moullec, Y., & Kanniche, M. (2011). Screening of flowsheet modifications for an efficient monoethanolamine (MEA) based post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 5(4), 727-740. doi: http://dx.doi.org/10.1016/j.ijggc.2011.03.004


Li, Y.-G., and Mather, A. (1996). Correlation and prediction of the solubility of CO2 and H2S in aqueous solutions of triethanolamine. Ind. Eng. Chem. Res., 35 (12), 4804‚Äď4809.


√ėi, L. E. (2007). Aspen HYSYS simulation of CO2 removal by amine absorption a gas based power plant. Paper presented at the The 48th Scandinavian Conference on Simulation and Modelling (SIMS2007) G√∂teborg, Sweden.


√ėi, L. E. (2012). Removal of CO2 from exhaust gas. (PhD Thesis), Telemark University College, Porsgrunn. (TUC 3: 2012)


√ėi, L. E., Br√•then, T., Berg, C., Brekne, S. K., Flatin, M., Johnsen, R., Thomassen, E. (2014). Optimization of Configurations for Amine based CO2 Absorption Using Aspen HYSYS. Energy Procedia, 51(0), 224-233. doi: http://dx.doi.org/10.1016/j.egypro.2014.07.026


√ėi, L. E., & Kvam, S. H. P. (2014). Comparison of Energy Consumption for Different CO2 Absorption Configurations Using Different Simulation Tools. Energy Procedia, 63(0), 1186-1195. doi: http://dx.doi.org/10.1016/j.egypro.2014.11.128


√ėi, L. E., Shchuchenko, V. (2011). Simulation of energy reduction in CO2 absorption using split-stream configurations. Paper presented at the 4th International Scientific Conference on Energy and Climate Change, Athens.


√ėi, L. E., Vozniuk, I.O. (2010). Optimizing CO2 absorption using split-stream configuration. Process and Technologies for a Sustainable Energy, Ischia.


Oyenekan, B. A., & Rochelle, G. T. (2007). Alternative stripper configurations for CO2 capture by aqueous amines. AIChE Journal, 53(12), 3144-3154. doi: 10.1002/aic.11316


Polasek, J. C., Bullin, J.A., Donnely, S.T. (1982). Alternative flow schemes to reduce capital and operationg costs of amine sweetening units. Paper presented at the Proceedings, AIChE Spring National Meeting, AIChE, New York.


Rochelle, G. T. (2003). Innovative Stripper Configurations to Reduce the Energy Cost of CO2 Capture Paper presented at the Second Annual Carbon Sequestration Conference, Alexandria, VA.


Tobiesen, F. A., Svendsen, H.F, Hoff, K.A. (2005). Desorber energy consumption amine based absorption plant. International Journal of Green Energy, 2, 201-215.

Proceedings of the 56th Conference on Simulation and Modelling (SIMS 56), October, 7-9, 2015, Linköping University, Sweden

Author:
Solomon Aforkoghene Aromada, Lars Øi
Title:
Simulation of improved absorption configurations for CO2 capture
DOI:
http://dx.doi.org/10.3384/ecp1511921
Note: the following are taken directly from CrossRef
Citations:
No citations available at the moment


Responsible for this page: Peter Berkesand
Last updated: 2017-02-21