Article | Proceedings of the 11th International Modelica Conference, Versailles, France, September 21-23, 2015 | Modeling and Validation of a Multiple Evaporator Refrigeration Cycle for Electric Vehicles
Göm menyn

Title:
Modeling and Validation of a Multiple Evaporator Refrigeration Cycle for Electric Vehicles
Author:
Andreas Varchmin: Technische Universit√§t Braunschweig, Institut für Thermodynamik, Germany Manuel Gräber: TLK-Thermo GmbH, Germany Jürgen Köhler: Technische Universit√§t Braunschweig, Institut für Thermodynamik, Germany
DOI:
10.3384/ecp15118281
Download:
Full text (pdf)
Year:
2015
Conference:
Proceedings of the 11th International Modelica Conference, Versailles, France, September 21-23, 2015
Issue:
118
Article no.:
030
Pages:
281-289
No. of pages:
9
Publication type:
Abstract and Fulltext
Published:
2015-09-18
ISBN:
978-91-7685-955-1
Series:
Linköping Electronic Conference Proceedings
ISSN (print):
1650-3686
ISSN (online):
1650-3740
Publisher:
Linköping University Electronic Press, Linköpings universitet


Export in BibTex, RIS or text

Multiple evaporator vapor compression cycles become relevant for thermal systems in electric vehicles since batteries and other electric components demand cooling for a secure operation. In difference to most other applications with parallel evaporators cooling demands and temperature levels vary between the different secondary fluids. This leads to a more complex system behavior that needs to be described for optimality and control analysis. In this paper a dynamic model for an automotive air conditioning cycle with an additional evaporator for battery cooling is developed and validated. A battery model library for calculating temperatures and waste heat flows of battery cells and modules is presented. Multi-evaporator effects and their consequences are discussed. Reasonable actuating and control variables are chosen and an analysis regarding possible control schemes is given.

Keywords: Multi-Evaporator Cycle; Parallel Evaporators; Vapor Compression Cycle; Electric Vehicle; Relative Gain Array

Proceedings of the 11th International Modelica Conference, Versailles, France, September 21-23, 2015

Author:
Andreas Varchmin, Manuel Gräber, Jürgen Köhler
Title:
Modeling and Validation of a Multiple Evaporator Refrigeration Cycle for Electric Vehicles
DOI:
http://dx.doi.org/10.3384/ecp15118281
References:

J.H. Ahn, H. Kang, H.S. Lee, and Y. Kim. Performance characteristics of a dual-evaporator heat pump system for effective dehumidifying and heating of a abin in electric vehicles. Applied Energy, 146:29‚Äď37, 2015. doi: 10.1016/j.apenergy.2015.01.124.


M. Einhorn, F.V. Conte, C. Kral, C. Niklas, H. Popp, and J. Fleig. A modelica library for simulation of elecric energy storages. 8th International Modelica Conference, Dresden, Germany, 2011.


M.S. Elliott, C. Estrada, and B.P. Rasmussen. Cascaded superheat control with a multiple evaporator refrigeration system. American Control Conference, San Francisco, USA, 2011.


M. Gr√§ber, K. Kosowski, C. Richter, and W. Tegethoff. Modelling of heat pumps with an object-oriented model library for thermodynamic systems. Mathematical and Computer Modelling of Dynamical Systems, 16:195‚Äď209, 2010. doi: 10.1080/13873954.2010.506799.


P. Grosdidier, M. Morari, and B.R. Holt. Closed-loop properties from steady-state gain information. Industrial and Engineering Chemistry Fundamentals, 24:221‚Äď235, 1985. doi: 10.1021/i100018a015.


J.B. Jensen and S. Skogestad. Optimal operation of simple refrigeration cycles. part i: Degrees of freedom and optimality of sub-cooling. Computers and Chemical Engineering, 31: 712‚Äď721, 2007. doi: 10.1016/j.compchemeng.2006.12.003.


D. Limperich, M. Braun, and G. Schmitz. System simulation of automotive refrigeration cycles. 4th International Modelica Conference, Hamburg, Germany, 2005.


A.A. Pesaran, M. Keyser, K. Smith, G.H. Kim, and S. Santhanagopalan. Tools for designing thermal management of batteries in electric drive vehicles. Large Lithium Ion Battery Technology & Application Symposia Advanced Automotive Battery Conference, Pasadena, USA, 2013.


C. Richter. Proposal of New Object-Oriented Equation-Based Model Libraries for Thermodynamic Systems. PhD thesis, Technische Universität Braunschweig, 2008.


F. Schedel, G. Suck, S. Försterling, W. Tegethoff, and J. Köhler. Effizienzbewertung von wärmepumpen in hybridfahrzeugen mit hilfe der verlustbasierten modellierung von scrollverdichtern. DKV-Tagung, Hannover, Germany, 2013.


C. Schulze. A Contribution to Numerically Efficient Modelling of Thermodynamic Systems. PhD thesis, Technische Universität Braunschweig, 2013.


S. Skogestad and I. Postlethwaite. Multivariable Feedback Control: Analysis and Design. Wiley, 2007.


M. Titze, N. Lemke, A. Hafner, and J. K√∂hler. Entwicklung und simulation luftaufbereitungs- und k√§lteanlageanlage im supermarkt mit w√§rmer√ľckgewinnung. DKV-Tagung, Hannover, Germany, 2013.


A. Varchmin, M. Gräber, W. Tegethoff, and J. Köhler. Superheat control with a dynamic inverse model. 10th International Modelica Conference, Lund, Sweden, 2014.


V.V. Viswanathan, D. Choi, D. Wang, W. Xu, S. Towne, R. Williford, J.-G. Zhang, J. Liu, and Z. Yang. Effect of entropy change of lithium intercalation in cathodes and anodes on li-ion battery thermal management. Journal of Power Sources, 195:3720‚Äď3729, 2009. doi: 10.1016/j.jpowsour.2009.11.103.

Proceedings of the 11th International Modelica Conference, Versailles, France, September 21-23, 2015

Author:
Andreas Varchmin, Manuel Gräber, Jürgen Köhler
Title:
Modeling and Validation of a Multiple Evaporator Refrigeration Cycle for Electric Vehicles
DOI:
http://dx.doi.org/10.3384/ecp15118281
Note: the following are taken directly from CrossRef
Citations:
No citations available at the moment


Responsible for this page: Peter Berkesand
Last updated: 2017-02-21