Article | Proceedings of SIGRAD 2014, Visual Computing, June 12-13, 2014, Göteborg, Sweden | Mirror Stereoscopic Display for Direct Volume Rendering
Göm menyn

Title:
Mirror Stereoscopic Display for Direct Volume Rendering
Author:
Filipe Marreiros: Center for Medical Image Science and Visualization (CMIV), Link√∂ping University/Department of Science and Technology (ITN) - Media and Information Technology (MIT) , Link√∂ping University, Sweden Örjan Smedby: Center for Medical Image Science and Visualization (CMIV), Linköping University/Department of Science and Technology (ITN) - Media and Information Technology (MIT) , Link√∂ping University/Department of Radiology (IMH), Link√∂ping University, Sweden
Download:
Full text (pdf)
Year:
2014
Conference:
Proceedings of SIGRAD 2014, Visual Computing, June 12-13, 2014, Göteborg, Sweden
Issue:
106
Article no.:
010
Pages:
75-82
No. of pages:
8
Publication type:
Abstract and Fulltext
Published:
2014-10-30
ISBN:
978-91-7519-212-3
Series:
Linköping Electronic Conference Proceedings
ISSN (print):
1650-3686
ISSN (online):
1650-3740
Publisher:
Linköping University Electronic Press, Linköpings universitet


Export in BibTex, RIS or text

A new mirror stereoscopic display for Direct Volume Rendering (DVR) is presented. The stereoscopic display system is composed of one monitor and one acrylic first surface mirror. The mirror reflects one image for one of the eyes. The geometrical transformations to compute correctly the stereo pair is presented and is the core of this paper. System considerations such as mirror placement and implications are also discussed. In contrast to other similar solutions, we do not use two monitors, but just one. Consequently one of the images needs to be skewed. Advantages of the system include absence of ghosting and of flickering. We also developed the rendering engine for DVR of volumetric datasets mostly for medical imaging visualization. The skewing process in this case is integrated into the ray casting of DVR. Using geometrical transformations, we can compute precisely the directions of the rays, producing accurate stereo pairs.

Proceedings of SIGRAD 2014, Visual Computing, June 12-13, 2014, Göteborg, Sweden

Author:
Filipe Marreiros, Örjan Smedby
Title:
Mirror Stereoscopic Display for Direct Volume Rendering
References:

[Bar03] BARCO: Stereoscopic projection: 3d projection technology. http://www.barco.com/projection\_systems/downloads/barco\_stereoscopic\_proj.pdf, 2003. 1


[Ber96] BERTHIER A.: Images st√©r√©oscopiques de grand format (in French). Cosmos 34, 590 and 591 (May 1896), 205‚Äď210 and 227‚Äď233. 1


[BES00] BIMBER O., ENCARNA√á√ÉO L. M., SCHMALSTIEG D.: Augmented reality with back-projection systems using transflective surfaces. Computer Graphics Forum (Proceedings of EUROGRAPHICS 2000) 19, 3 (2000), 161‚Äď168. 3


[BFSE01] BIMBER O., FR√ĖHLICH B., SCHMALSTIEG D., ENCARNA√á√ÉO L. M.: The virtual showcase. IEEE Computer Graphics and Applications 21, 6 (2001), 48‚Äď55. 3


[Boh] BOH√ĀČ M.: Dual monitor setup for stereoscopic viewing. http://klub.stereofotograf.eu/dual\_monitor.php. 2, 8


[Bou99] BOURKE P.: Calculating stereo pairs. http://paulbourke.net/miscellaneous/stereographics/stereorender/, 1999. 7


[CV95] CUTTING J. E., VISHTON P. M.: Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. "W. Epstein and S. Rogers (eds.), Handbook of perception and cognition", 1995. 1, 7


[DCH88] DREBIN R. A., CARPENTER L., HANRAHAN P.: Volume rendering. SIGGRAPH Computer Graphics 22, 4 (1988), 65‚Äď74. 3


[Dod04] DODGSON N. A.: Variation and extrema of human interpupillary distance. In Proc. of SPIE: Stereoscopic Displays and Virtual Reality Systems XI (2004), vol. 5291, pp. 36‚Äď46. 2


[FRM*05] FERGASON J., ROBINSON S., MCLAUGHLIN C., BROWN B., ABILEAH A., BAKER T., GREEN P.: An innovative beamsplitter-based stereoscopic/3d display design. SPIE Stereoscopic Displays and Virtual Reality Systems 5664 (May 2005), 488‚Äď494. 2


[GCC*89] GORDON C. C., CLAUSER B. B. C. E., CHURCHILL T., MCCONVILLE J. T., TEBBETTS I., WALKER R. A.: 1987-1988 anthropometric survey of u.s. army personnel: Methods and summary statistics. tr-89-044. natick ma: U.s. army natick research, development and engineering center., 1989. 2


[Gra68] GRAND Y. L.: Light, Color and Vision, second ed. London: Chapman and Hall, 1968. 7


[Hea81] HEATH S. T. L.: A history of Greek mathematics. Volume II:From Aristarchus to Diophantus. Oxford: At The Clarendon Press., 1981. 2


[Hen93] HENSON D.: Visual Fields. Oxford: Oxford University Press, 1993. 4


[HHM98] HUBBOLD R., HANCOCK D., MOORE C.: Stereoscopic volume rendering. Proc. Visualization in Scientific Computing ‚Äô98 6, 3 (1998), 105‚Äď115. 7


[Hol05] HOLLIMAN N.: 3d display systems. http://www.dur. ac.uk/n.s.holliman/Presentations/3dv3-0.pdf, 2005. 1


[HWSB99] HUBONA G., WHEELER P., SHIRAH G., BRANDT M.: The relative contributions of stereo, lighting and background scenes in promoting 3d depth visualization. ACM Transaction on Computer-Human Interaction 6, 3 (1999), 214‚Äď242. 7


[Ive02] IVES F. E.: A novel stereogram. Journal of the Franklin Institute 153 (1902), 51‚Äď52. 1


[JF03] JORKE H., FRITZ M.: Infitec-A new stereoscopic visualization tool by wavelength multiplexing imaging. In Proc. Electronic Displays (2003). 1


[KH07] KONRAD J., HALLE M.: 3-d displays and signal processing. IEEE Signal Processing Mag. 24, 7 (May 2007), 97‚Äď111. 1, 2


[KSTE06] KERSTEN M., STEWART J., TROJE N., ELLIS R.: Enhancing depth perception in translucent volumes. IEEE Transactions on Visualization and Computer Graphics 12, 5 (2006), 1117‚Äď1124. 7


[Lev88] LEVOY M.: Display of surfaces from volume data. IEEE Computer Graphics and Applications 8, 3 (May 1988), 29‚Äď37. 3


[MM05] MARREIROS F. M. M., MARCOS A.: Calculating the stereo pairs of a mirror-based augmented reality system. 13o Encontro Português de Computação Gráfica (2005). 7


[MS13] MARREIROS F. M. M., SMEDBY √Ė.: Stereoscopic static depth perception of enclosed 3d objects. In SAP ‚Äô13 Proceedings of the ACM Symposium on Applied Perception (2013), pp. 15‚Äď22. 7


[Nvi12] NVIDIA: 3D Vision. http://www.nvidia.com/object/3d-vision-main.html, 2012. 1


[OO90] OWCZARCZYK J., OWCZARCZYK B.: Evaluation of true 3d display systems for visualizing medical volume data. The Visual Computer 6, 4 (1990), 219‚Äď226. 7


[Pla] PLANAR3D: 3D Technologies. http://www.planar3d. com/3d-technology/3d-technologies/. 2


[Sac04] SACKETT C.: Survey of optical systems: Phys 531, lecture 11, university of virginia. http://galileo.phys.virginia.edu/classes/531.cas8m.fall04/l11.pdf, 2004.
7


[TSO*12] TOURANCHEAU S., SJ√ĖSTR√ĖM M., OLSSON R., PERSSON A., RUDLING J., ERICSON T., NOR√ČN B.: Subjective evaluation of user experience in interactive 3d visualization in a medical context. Proc. SPIE 8318, 831814 (2012), 219‚Äď226. 7


[WC10] WU H.-H. P., CHANG S.-H.: Design of stereoscopic viewing system based on a compact mirror and dual monitor. SPIE Optical Engineering 027401 49, 2 (2010), 1‚Äď6. 2


[WT05] WICKENS C., THOMAS L.: Effects of CDTI display dimensionality and conflict geometry on conflict resolution performance. In Proceedings of the 13th International Symposium on Aviation Psychology (2005). 7

Proceedings of SIGRAD 2014, Visual Computing, June 12-13, 2014, Göteborg, Sweden

Author:
Filipe Marreiros, Örjan Smedby
Title:
Mirror Stereoscopic Display for Direct Volume Rendering
Note: the following are taken directly from CrossRef
Citations:
No citations available at the moment


Responsible for this page: Peter Berkesand
Last updated: 2017-02-21