Article | KEER2014. Proceedings of the 5th Kanesi Engineering and Emotion Research; International Conference; Linköping; Sweden; June 11-13 | Establishing Metrics for Kansei Responses: An Approach Using the Rasch Model
Göm menyn

Title:
Establishing Metrics for Kansei Responses: An Approach Using the Rasch Model
Author:
Fabio Camargo: University of Leeds, School of Mechanical Engineering, UK Brian Henson: University of Leeds, School of Mechanical Engineering, UK
Download:
Full text (pdf)
Year:
2014
Conference:
KEER2014. Proceedings of the 5th Kanesi Engineering and Emotion Research; International Conference; Linköping; Sweden; June 11-13
Issue:
100
Article no.:
049
Pages:
585-594
No. of pages:
10
Publication type:
Abstract and Fulltext
Published:
2014-06-11
ISBN:
978-91-7519-276-5
Series:
Linköping Electronic Conference Proceedings
ISSN (print):
1650-3686
ISSN (online):
1650-3740
Publisher:
Linköping University Electronic Press; Linköpings universitet


Export in BibTex, RIS or text

Although qualitative comparisons are necessarily part of the process to elicit users’ kansei responses to products; they are insufficient to provide a more fine-grained interpretation of users’ interaction; which can require a measurement system. However; kansei variables cannot be measured directly. Data obtained from kansei responses need to be transformed by statistical methods and meet measurement assumptions. An approach to validate the quantitative structure of kansei scales is the application of Rasch measurement theory. The Rasch model; which is referred to as a family of probabilistic models; provides mechanisms to test the hypothesis that the observations meet the assumptions for establishing a quantitative structure. In this paper a number of procedures in Rasch modelling are outlined. Different examples from empirical applications using some techniques of kansei engineering show that the establishment of measures for comparisons between individuals and between stimulus objects is not a trivial matter.

Keywords: Kansei Engineering; Kansei Measurement; Rasch Model; Validation

KEER2014. Proceedings of the 5th Kanesi Engineering and Emotion Research; International Conference; Linköping; Sweden; June 11-13

Author:
Fabio Camargo, Brian Henson
Title:
Establishing Metrics for Kansei Responses: An Approach Using the Rasch Model
References:

Andrich; D. (1978). Application of a psychometric rating model to ordered categories which are scored with successive integers. Applied Psychological Measurement; 2(4); 581 – 594.


Andrich; D.; (1988). Rasch models for measurement. Sage university papers series on quantitative applications in the social sciences; No. 68; London: Sage.


Barnes; C. and Lillford; S. (2009). Decision support for the design of affective products. Journal of Engineering Design; 20 (5); 477 – 492.


Broderson; J.; Meads; D.; Kreiner; S.; Thorsen; H.; Doward; L. and McKenna; S. (2007). Methodological aspects of differential item functioning in the Rasch model. Journal of Medical Economics; 10(3); 309 – 324.


Camargo; F.R. and Henson; B. (2011). Measuring affective responses for human-oriented product design using the Rasch model. Journal of Design Research; 9(4); 360 – 375.


Camargo; F.R. and Henson; B. (2012a). The Rasch probabilistic model for measuring affective responses to product features. International Journal of Human Factors and Ergonomics; 1(2); 204 – 219.


Camargo; F.R. and Henson; B. (2012b). Invariant comparisons in affective design. In: Y.G. Ji (Ed). Advances in affective and pleasurable design (pp. 490 – 499). Boca Raton: CRC Press.


Fisher; R. A. (1922). On mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London (A) 222; 309 – 368.


Gates; B. (2013). Measuring progress. Retrieved November 15; 2013; from Bill and Melinda Gates foundation web site: http://annualletter.gatesfoundation.org


Krantz; D.H.; Luce; R.D.; Suppes; P. and Tversky; A.; 1971. Foundations of measurement; Vol. 1. New York: Academic Press.


Linacre; J.M. (1989). Many-facet Rasch measurement. Chicago: MESA Press.


Linacre; J.M. (1999). Understanding Rasch measurement: estimation methods for Rasch measures. Journal of Outcome Measurement; 3(4); 382 – 485.


Linacre; J.M. andWright; B.D. (1989). The "length" of a logit. Rasch Measurement Transactions; 3(2); 54 – 55.


Luce; R.D. and Tukey; J.W. (1964). Simultaneous conjoint measurement: a new type of fundamental measurement. Journal of Mathematical Psychology; 1(1); 1 – 27.


Marais; I. and Andrich; D. (2008). Effects of varying magnitude and patterns of response dependence in the unidimensional Rasch model. Journal of Applied Measurement; 9(2); 105 – 124.


Masters; G.N.; 1982. A Rasch model for partial credit scoring. Psychometrika; 47 (2);149 – 174.


Rasch; G. (1960; 1980). Probabilistic models for some intelligence and attainment tests; (Copenhagen; Danish Institute for Educational Research); expanded edition (1980) with foreword and afterword by Wright; B.D. Chicago: The University of Chicago Press.


Rosen; W. (2010). The most powerful Idea in the world: a story of steam; industry and invention. London: Random House.


Tennant; A. and Conaghan; P.G. (2007). The Rasch measurement model in rheumatology: what is it and why use it? When should it be applied; and what should one look for in a Rasch paper? Arthritis & Rheumatism; 57(8); 1358 – 1362.


Wilson; K.; Lizzio; A. and Ramsden; P. (1997). The development; validation and application of course experience questionnaire. Studies in Higher Education; 22(1); 33 – 53.


Wright; B;D. and Masters; G.N. (1982). Rating Scale Analysis. Chicago: Mesa Press.

KEER2014. Proceedings of the 5th Kanesi Engineering and Emotion Research; International Conference; Linköping; Sweden; June 11-13

Author:
Fabio Camargo, Brian Henson
Title:
Establishing Metrics for Kansei Responses: An Approach Using the Rasch Model
Note: the following are taken directly from CrossRef
Citations:
No citations available at the moment


Responsible for this page: Peter Berkesand
Last updated: 2017-02-21