Article | Proceedings of the 10<sup>th</sup> International Modelica Conference; March 10-12; 2014; Lund; Sweden | Adsorption energy systems library - Modeling adsorption based chillers; heat pumps; thermal storages and desiccant systems
Göm menyn

Title:
Adsorption energy systems library - Modeling adsorption based chillers; heat pumps; thermal storages and desiccant systems
Author:
Uwe Bau: RWTH Aachen University, Institute of Technical Thermodynamics, Aachen, Germany Franz Lanzerath: RWTH Aachen University, Institute of Technical Thermodynamics, Aachen, Germany Manuel Gräber: TU Braunschweig, Institute of Thermodynamics, Braunschweig, Germany Stefan Graf: RWTH Aachen University, Institute of Technical Thermodynamics, Aachen, Germany Heike Schreiber: RWTH Aachen University, Institute of Technical Thermodynamics, Aachen, Germany Niklas Thielen: RWTH Aachen University, Institute of Technical Thermodynamics, Aachen, Germany André Bardow: RWTH Aachen University, Institute of Technical Thermodynamics, Aachen, Germany
DOI:
10.3384/ecp14096875
Download:
Full text (pdf)
Year:
2014
Conference:
Proceedings of the 10th International Modelica Conference; March 10-12; 2014; Lund; Sweden
Issue:
096
Article no.:
091
Pages:
875-883
No. of pages:
9
Publication type:
Abstract and Fulltext
Published:
2014-03-10
ISBN:
978-91-7519-380-9
Series:
Linköping Electronic Conference Proceedings
ISSN (print):
1650-3686
ISSN (online):
1650-3740
Publisher:
Linköping University Electronic Press; Linköpings universitet


Export in BibTex, RIS or text

A library for dynamic modeling adsorption based thermal systems like chillers; heat pumps; thermal storages or desiccant units is presented. Adsorption devices serve a wide range of applications but consist of the same basic components. By modeling these basic components; the presented model library allows to investigate any interesting topology. Thereby this adsorption library gives the user the opportunity to design and optimize adsorption systems quickly and efficiently. To demonstrate the flexibility of the library; three validated examples are presented: A desiccant unit; a thermal storage; and an adsorption chiller.

Keywords: Adsorption; simulation; validation; modular; chiller; thermal storage; heat pump; desiccant

Proceedings of the 10th International Modelica Conference; March 10-12; 2014; Lund; Sweden

Author:
Uwe Bau, Franz Lanzerath, Manuel Gräber, Stefan Graf, Heike Schreiber, Niklas Thielen, André Bardow
Title:
Adsorption energy systems library - Modeling adsorption based chillers; heat pumps; thermal storages and desiccant systems
DOI:
http://dx.doi.org/10.3384/ecp14096875
References:

[1] Meunier F E. Adsorption heat powered heat pumps. Applied Thermal Engineering, 61, pp. 830-836, 2013.


[2] Daou K, Wang R Z, Xia Z Z. Desiccant cooling air conditioning: a review. Renewable and Sustainable Energy Review, 10, pp. 55-77, 2006.


[3] Douss N, Meunier F E, Sun L-M. Predictive Model and Experimental Results for a Two-Adsorber Solid Adsorption Heat Pump. Industrial and Engineering Chemistry Research, 27, pp. 310-316, 1988.


[4] Maggio G, Freni A, Restuccia G. A dynamic model of heat and mass transfer in a double-bed adsorption machine with internal heat recovery. International Journal of Refrigeration, 29, pp.589-600, 2006.


[5] Wang X, Chua H T. Two bed silica gel-water adsorption chillers: An effectual lumped parameter model. International Journal of Refrigeration, 30, pp. 1417-1426, 2007.


[6] Schicktanz M, N√ļ√Īez T. Modelling of an adsorption chiller for dynamic system simulation. International Journal of Refrigeration, 32, pp. 588-595, 2009.


[7] Joos A, Dietl K, Schmitz G. Thermal Separation: An Approach for a Modelica Library for Absorption, Adsorption and Rectification. In: Proceedings 7th Modelica Conference, 2009.


[8] Kärger J, Ruthven D M, Theodorou D N. Diffusion in Nanoporous Materials. Wiley-VCH, 2012.


[9] Wang D, Zhang J, Tian X, Liu D, Sumathy K. Progress in silica gel-water adsorption refrigeration technology. Renewable and Sustainable Energy Reviews, 30, pp. 85-104, 2014.


[10] Misha S, Mat S, Ruslan M H, Sopian K. Review of solid/liquid desiccant in the drying applications and its regeneration methods. Renewable and Sustainable Energy Reviews, 16, pp. 4686-4707, 2014.


[11] Langmuir I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. Journal of the American Chemical Society, 40, pp. 1361-1403, 1918.


[12] Brunauer S, Emmett P H, Teller E. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60, pp. 309-319, 1938.


[13] Dubinin M M. Adsorption in micropores. Journal of Colloid and Interface Science, 23, pp. 487-499, 1967.


[14] Polanyi M. Adsorption of gases by a nonvolatile adsorbent. Verhandlungen der Deutschen Physikalischen Gesellschaft, 18, pp. 55-80, 1916.


[15] Gräber M, Kosowski K, Richter C, Tegethoff W. Modelling of heat pumps with an object-oriented model library for thermodynamic systems. Mathematical and Computer Modelling of Dynamical Systems, 16, pp. 195-209, 2010.


[16] Dittus W, Boelter L M K. Heat transfer in automobile radiators of the tubular type. University of California - Publications in Engineering, 2, pp. 443 - 461, 1930.


[17] Sieder E N, Tate G E. Heat Transfer and Pressure Drop of Liquids in Tubes. Industrial and Engineering Chemistry, 28, pp. 1429-1435, 1936.


[18] Pesaran A A, Mills A F. Moisture transport in silica gel packed beds II. Experimental study. International Journal of Heat and Mass Transfer, 6, pp. 1051‚Äď1060, 1987.


[19] Pesaran A A, Mills A F. Moisture transport in silica gel packed beds I. Theoretical study. International Journal of Heat and Mass Transfer, 6, pp. 1037‚Äď1049, 1987.


[20] Hougen O A, Marshall W R. Adsorption from a Fluid Stream flowing through a stationary Granular Bed. Chemical Engineering Progress, 46, pp. 197-208, 1947.


[21] Schreiber H, Graf S, Lanzerath F, Bardow A. Adsorption heat storage for combined heat and power units in industrial batch processes. International Sorption Heat Pump Conference, 2014.


[22] Binkert J, Lauer J, Diaconu A, Ru√ü W, Schreiber H, Bardow A. Entwicklung einer Verfahrenskombination aus Zeolithw√§rmepumpe, Vakuumeindampfsystem und Blockheizkraftwerk zur energieeffizienten W√§rmeversorgung von Brauereien. Deutscher Bund f√ľr Umwelt und Naturschutz (DBU), 2013.


[23] N√ļ√Īez T. Charakterisierung und Bewertung von Adsorbentien f√ľr W√§rmetransformationsanwendungen. PhD thesis, Albert-Ludwigs-Universit√§t Freiburg, 2001.


[24] Lanzerath F, Seiler J, Bau U, Bardow A. A modular experimental and simulation approach for the systematic development of adsorption heat pumps. International Sorption Heat Pump Conference, 2014.


[25] Schawe D. Theoretical and Experimental Investigations of an Adsorption Heat Pump with Heat Transfer between two Adsorbers. PhD thesis, Universität Stuttgart, 2001.

Proceedings of the 10th International Modelica Conference; March 10-12; 2014; Lund; Sweden

Author:
Uwe Bau, Franz Lanzerath, Manuel Gräber, Stefan Graf, Heike Schreiber, Niklas Thielen, André Bardow
Title:
Adsorption energy systems library - Modeling adsorption based chillers; heat pumps; thermal storages and desiccant systems
DOI:
http://dx.doi.org/10.3384/ecp14096875
Note: the following are taken directly from CrossRef
Citations:
No citations available at the moment


Responsible for this page: Peter Berkesand
Last updated: 2017-02-21