Article | Proceedings of the 10<sup>th</sup> International Modelica Conference; March 10-12; 2014; Lund; Sweden | Nonlinear State Estimation with an Extended FMI 2.0 Co-Simulation Interface
Göm menyn

Title:
Nonlinear State Estimation with an Extended FMI 2.0 Co-Simulation Interface
Author:
Jonathan Brembeck: German Aerospace Center (DLR), Institute of System Dynamics and Control, Germany Andreas Pfeiffer: German Aerospace Center (DLR), Institute of System Dynamics and Control, Germany Michael Fleps-Dezasse: German Aerospace Center (DLR), Institute of System Dynamics and Control, Germany Martin Otter: German Aerospace Center (DLR), Institute of System Dynamics and Control, Germany Karl Wernersson: Dassault Systèmes AB, Ideon Science Park, Lund, Sweden Hilding Elmqvist: Dassault Systèmes AB, Ideon Science Park, Lund, Sweden
DOI:
10.3384/ecp1409653
Download:
Full text (pdf)
Year:
2014
Conference:
Proceedings of the 10th International Modelica Conference; March 10-12; 2014; Lund; Sweden
Issue:
096
Article no.:
005
Pages:
53-62
No. of pages:
10
Publication type:
Abstract and Fulltext
Published:
2014-03-10
ISBN:
978-91-7519-380-9
Series:
Linköping Electronic Conference Proceedings
ISSN (print):
1650-3686
ISSN (online):
1650-3740
Publisher:
Linköping University Electronic Press; Linköpings universitet


Export in BibTex, RIS or text

In this paper we propose a method how to automatically utilize continuous-time Modelica models directly in nonlinear state estimators. The approach is based on an extended FMI 2.0 Co-Simulation Interface that interacts with the state estimation algorithm implemented in a Modelica library. Besides a short introduction to Kalman Filter based state estimation; we give details on a generic interface to interact with FMUs in Modelica; an implementation of nonlinear state estimation based on this interface; and the Dymola prototype used for the evaluation. Finally we show first results in a tire load estimation application for our robotic electric research platform ROMO.

Keywords: FMI 2.0 Co-Simulation; FMU; Inline Integration; Kalman Filter; State Estimation; Moving Horizon Estimation; Tire Load Estimation

Proceedings of the 10th International Modelica Conference; March 10-12; 2014; Lund; Sweden

Author:
Jonathan Brembeck, Andreas Pfeiffer, Michael Fleps-Dezasse, Martin Otter, Karl Wernersson, Hilding Elmqvist
Title:
Nonlinear State Estimation with an Extended FMI 2.0 Co-Simulation Interface
DOI:
http://dx.doi.org/10.3384/ecp1409653
References:

[1] Functional Mockup Interface for Model Exchange and Co-Simulation 2.0 RC1, Modelica Association, 18.10.2013. [Online]. Available [Accessed 25.1.2014]: https://www.fmi-standard.org/downloads#version2.


[2] J. Brembeck, M. Otter and D. Zimmer, Nonlinear Observers based on the Functional Mockup Interface with Applications to Electric Vehicles, in Proceedings of 8th International Modelica Conference, Dresden, 2011. Available [Accessed 25.1.2014]: http://www.ep.liu.se/ecp/063/053/ecp11063053.pdf.


[3] M. Fleps-Dezasse and J. Brembeck, Model based vertical dynamics estimation with Modelica and FMI, in IFAC ACC, National Olympics Memorial Youth Center, Tokyo, Japan, 2013.


[4] J. Brembeck, L. M. Ho, A. Schaub, C. Satzger, J. Tobolar, J. Bals and G. Hirzinger, ROMO - the robotic electric vehicle, in 22nd IAVSD International Symposium on Dynamics of Vehicle on Roads and Tracks, Manchester, 11.-14. Aug. 2011.


[5] Modrio ITEA2, [Online]. Available [Accessed 25.1.2014]: https://modelica.org/external-projects/modrio http://www.itea2.org/project/index/view/?project=10114.


[6] C. Engst, Object-Oriented Modelling and Real-Time Simulation of an Electric Vehicle in Modelica, Masters Thesis, TUM EAL Munich, 2010.


[7] Functional Mock-up Interface for Model Exchange,Version 1.0, 25 January 2010. [Online]. Available [Accessed 25.1.2014]: https://www.fmistandard.org/downloads#version1.


[8] J. Hartikainen and S. Särkkä, Optimal filtering with Kalman filters and smoothers - A Manual for Matlab toolbox EKF/UKF, February 2008. [Online]. Available [Accessed 25.1.2014]: http://www.lce.hut.fi/research/mm/ekfukf/.


[9] B. Houska, H. J. Ferreau and M. Diehl, ACADO toolkit ‚Äď An open-source framework for automatic control and dynamic optimization, Optimal Control pplications& Methods, vol. 32, no. 3, pp. 298-312, 2010.


[10] D. Simon, Kalman filtering with state constraints: a survey of linear and nonlinear algorithms, IET Control Theory & Applications, vol. 4, no. 8, p. 1303+, 2010.


[11] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches, 1. Edition ed., Wiley & Sons, 2006.


[12] J. Brembeck, Method to extend models for system design to models for system operation, MODRIO First Project Report, Munich, 2013.


[13] S. J. Julier and J. K. Uhlmann, Unscented filtering and nonlinear estimation, Proceedings of the IEEE, vol. 92, no. 3, pp. 401-422, March 2004. DOI: 10.1109/JPROC.2003.823141


[14] S. Haykin, Kalman Filtering and Neural Networks, Wiley-Interscience, 2001. DOI: 10.1002/0471221546


[15] J. Rosen, The Gradient Projection Method for Nonlinear Programming. Part I. Linear Constraints, Journal of the Society for Industrial and Applied Mathematics, vol. 8, no. 1, pp. 181-217, 1960. DOI. 10.1137/0108011


[16] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban and D. E. Shumaker, SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers, ACM Transactions on Mathematical Software, vol. 31(3), pp. 363-369, 2005. Software: Available [Accessed 25.1.2014] http://computation.llnl.gov/casc/sundials/main.html.


[17] H. Elmqvist, F. Cellier and M. Otter, Inline Integration: A new mixed symbolic/numeric approach for solving differential-algebraic equation systems, in European Simulation Multiconference, Prague, 1995. Available [Accessed 25.1.2014] http://www.inf.ethz.ch/personal/fcellier/Pubs/OO/esm_95 pdf.


[18] M. Mitschke and H. Wallentowitz, Dynamik der Kraftfahrzeuge, Berlin: Springer, 2004. DOI: 10.1007/978-3-662-06802-1


[19] R. Williams, Electronically controlled automotive suspensions, Computing Control Engineering Journal, vol. 5, no. 3, pp. 143-148, jun 1994. DOI: 10.1049/cce:19940310


[20] S. Savaresi, C. Poussot-Vassal, C. Spelta, O. Sename and L. Dugard, Semi-Active Suspension Control Design for Vehicles, Elsevier Science, 2010.


[21] E. Guglielmino, Semi-active suspension control - Improved vehicle ride and road friendliness, London: Springer, 2008.


[22] G. Koch, T. Kloiber, E. Pellegrini and B. Lohmann, A nonlinear estimator concept for active vehicle suspension control, in Proc. American Control Conf. (ACC), Baltimore, 2010.

Proceedings of the 10th International Modelica Conference; March 10-12; 2014; Lund; Sweden

Author:
Jonathan Brembeck, Andreas Pfeiffer, Michael Fleps-Dezasse, Martin Otter, Karl Wernersson, Hilding Elmqvist
Title:
Nonlinear State Estimation with an Extended FMI 2.0 Co-Simulation Interface
DOI:
http://dx.doi.org/10.3384/ecp1409653
Note: the following are taken directly from CrossRef
Citations:
No citations available at the moment


Responsible for this page: Peter Berkesand
Last updated: 2017-02-21