Article | 13th Scandinavian International Conference on Fluid Power; June 3-5; 2013; Linköping; Sweden | Thermo-energetic analysis and simulation of the fluidic cooling system of motorized high-speed spindles
Göm menyn

Title:
Thermo-energetic analysis and simulation of the fluidic cooling system of motorized high-speed spindles
Author:
Juliane Weber: Institute of Fluid Power, Dresden University of Technology, Dresden, Germany Jürgen Weber: Institute of Fluid Power, Dresden University of Technology, Dresden, Germany
DOI:
10.3384/ecp1392a14
Download:
Full text (pdf)
Year:
2013
Conference:
13th Scandinavian International Conference on Fluid Power; June 3-5; 2013; Linköping; Sweden
Issue:
092
Article no.:
014
Pages:
131-140
No. of pages:
10
Publication type:
Abstract and Fulltext
Published:
2013-09-09
ISBN:
978-91-7519-572-8
Series:
Linköping Electronic Conference Proceedings
ISSN (print):
1650-3686
ISSN (online):
1650-3740
Publisher:
Linköping University Electronic Press; Linköpings universitet


Export in BibTex, RIS or text

Beside drive tasks for feeding movements and tool clamping; fluid power systems especially permit the temperature control in machine tools: They allow cooling or pre-heating of both single components and complete assemblies (e.g. frame components; drive motors and spindles). In this respect; fluid power systems are an important element for controlling and managing the thermo-elastic behavior of machine tools. As an essential part of the machine; they must be included from the beginning of the design studies of machine tools -- particularly in terms of accuracy under conditions of energy-efficient manufacturing.

The increasing complexity and performance of fluid power systems generally lead to an increased use of auxiliary power. This has to be critically examined from an economic and environmental point of view. Focusing especially on the optimum thermal performance with minimum power supply; existing simulation models are not suitable for a scientifically based design. The complex system structures as well as the lack of basic investigations and design tools lead to a thermal optimization problem that is not solved satisfactorily today. For this purpose the Institute of Fluid Power (IFD) develops principles and simulation models with a holistic approach.

Based on the analysis of general tooling machines fluidic subsystems are identified and essential modeling requirements are specified. From a fluid-technical perspective the motor spindle represents an important principal component; and therefore; is a particular focus of current investigations. Starting from the basic technical structure of the motor spindles an abstract model is derived. This model represents the basis for different simulation strategies such as network-based or numerical ones. To study the thermal behavior of cooling sleeves in motor spindles -- especially with regard to the parameter identification and the validation of simulation models -- a test rig was developed. The modular construction of the test rig ensures a simple replacement of the cooling sleeve allowing the examination of different flow geometries

Keywords: Heat transfer; high-speed spindle; numerical simulation; network-based simulation

13th Scandinavian International Conference on Fluid Power; June 3-5; 2013; Linköping; Sweden

Author:
Juliane Weber, Jürgen Weber
Title:
Thermo-energetic analysis and simulation of the fluidic cooling system of motorized high-speed spindles
DOI:
http://dx.doi.org/10.3384/ecp1392a14
References:

[1] R. Walter. Mit direkter K√ľhlung zu mehr Genauigkeit. Werkstatt und Betrieb; 139(6):129-130; 2006
[2] I. S. Javelov. Projektierung von K√ľhlsystemen f√ľr Elektrospindeln. Stanki i Instrument; 54(4):25-26; 1983.
[3] R. L. Judd; K. Aftab; M. A. Elbestawi. An Investigation of the Use of Heat Pipes for Machine Tool Spindle Bearing Cooling. International Journal of Machine Tools and Manufacture; 34(7): 1031-1043; 1994.
[4] K. Gebert. Ein Beitrag zur thermischen Modellbildung von schnelldrehenden Motorspindeln. Darmst√§dter Forschungsberichte f√ľr Konstruktion und Fertigung. Shaker Verlag; Aachen; 1997. ISBN 978-3-8265-2881-1.
[5] C. H. Chien; and J. Y. Jang. 3-D numerical and experimental analysis of a built-in motorized high-speed spindle with helical water cooling channel. Applied Thermal Engineering; 28: 2327-2336; 2008.
[6] J. Weber. Ein ger√§teorientiertes Modellierungskonzept mit Ber√ľcksichtigung der Fluideigenschaften f√ľr die dynamische Simulation in der Hydraulik. Dissertation; Technische Universit√§t Dresden; 1990.
[7] E. Lautner; and F. R√§pke. Simulationsmodul Fluidtechnik f√ľr system√ľbergreifende dynamische Analysen. Sonderdruck aus O+P √Ėlhydraulik und Pneumatik; 41(6); 1997.
[8] G. Jungnickel. Simulation des thermischen Verhaltens von Werkzeugmaschinen. Modellierung und Parametrierung. Schriftenreihe des Lehrstuhls f√ľr Werkzeugmaschinen; Addprint AG; Dresden; 2010. ISBN 978-3-86780-172-0.
[9] ANSYS Inc. (ed.). ANSYS CFX-Solver Modeling Guide. Canonsburg; U.S.A.; 2010.
[10] ANSYS Inc. (ed.). ANSYS CFX-Solver Theory Guide. Canonsburg; U.S.A.; 2010.
[11] H. Sigloch. Technische Fluidmechanik. Springer-Verlag; Berlin; Heidelberg; 2009. ISBN 978-3-642-03089-5.
[12] VDI (ed.). VDI-W√§rmeatlas. Berechnungsunterlagen f√ľr Druckverlust; W√§rme- und Stoff√ľbertragung. Springer-Verlag; Berlin; Heidelberg; 2006. ISBN 3540255044.
[13] E. F. Schmidt. W√§rme√ľbergang und Druckverlust in Rohrschlangen. Zeitschrift f√ľr Technische Chemie; Verfahrenstechnik und Apparatewesen; 39(13):781-832; 1967.
[14] J. Hak. L√∂sung eines W√§rmequellen-Netzes mit Ber√ľcksichtigung der K√ľhlstr√∂me. Archiv f√ľr Elektrotechnik. 42(3):137-154; 1956

13th Scandinavian International Conference on Fluid Power; June 3-5; 2013; Linköping; Sweden

Author:
Juliane Weber, Jürgen Weber
Title:
Thermo-energetic analysis and simulation of the fluidic cooling system of motorized high-speed spindles
DOI:
http://dx.doi.org/10.3384/ecp1392a14
Note: the following are taken directly from CrossRef
Citations:
No citations available at the moment


Responsible for this page: Peter Berkesand
Last updated: 2017-02-21