Article | Proceedings of the 9th International MODELICA Conference; September 3-5; 2012; Munich; Germany | Optimization Library for Interactive Multi-Criteria Optimization Tasks

Title:
Optimization Library for Interactive Multi-Criteria Optimization Tasks
Author:
Andreas Pfeiffer: Institute of System Dynamics and Control, German Aerospace Center DLR, Oberpfaffenhofen, Germany
DOI:
10.3384/ecp12076669
Download:
Full text (pdf)
Year:
2012
Conference:
Proceedings of the 9th International MODELICA Conference; September 3-5; 2012; Munich; Germany
Issue:
076
Article no.:
068
Pages:
669-680
No. of pages:
12
Publication type:
Abstract and Fulltext
Published:
2012-11-19
ISBN:
978-91-7519-826-2
Series:
Linköping Electronic Conference Proceedings
ISSN (print):
1650-3686
ISSN (online):
1650-3740
Publisher:
Linköping University Electronic Press; Linköpings universitet


The commercial library Optimization 2.1 for interactive multi-criteria optimization tasks has been released along with Dymola 2013. The library offers several numerical optimization algorithms for solving different kinds of optimization tasks. User defined Modelica functions or models provide the basis for an interactive optimization process where the user keeps overview of complex multi-criteria optimization tasks that can take discrete parameters; several model operating points or trajectories into account. Computational performance of optimization runs can be significantly increased by parallel numerical integrations of the Modelica model on multi-core machines.

Keywords: Modelica; Optimization; Multi-Criteria; Trajectory Optimization; Parallel Simulation

Proceedings of the 9th International MODELICA Conference; September 3-5; 2012; Munich; Germany

Author:
Andreas Pfeiffer
Title:
Optimization Library for Interactive Multi-Criteria Optimization Tasks
DOI:
10.3384/ecp12076669
References:
[AAG+10] Åkesson J.; Årzén K.-E.; Gäfvert M.; Bergdahl T. and Tummescheit H.: Modeling and Optimization with Optimica and JModelica.org – Languages and Tools for Solving Large-Scale Dynamic Optimization Problems. Computers and Chemical Engineering; Vol. 34; Issue 11; pp. 1737-1749; 2010. doi: 10.1016/j.compchemeng.2009.11.011.
[B01] Betts J. T.: Practical Methods for Optimal Control Using Nonlinear Programming. SIAM Press; Philadelphia; Pennsylvania; USA; 2001.
[CJP08] Chapman B.; Jost G. and van der Pas R.: Using OpenMP; Portable Shared Memory Parallel Programming. The MIT Press; Cambridge; Massachusetts; London; England; 2008.
[DH02] Deuflhard P. and Hohmann A.: Numerische Mathematik I. Eine algorithmisch orientierte EinfĂĽhrung. 3. Auflage; de Gruyter; Berlin; Germany; 2002.
[DS12a] Dassault Systèmes AB: CATIA. www.3ds.com/products/catia.
[DS12b] Dassault Systèmes AB: Dymola. www.dymola.com.
[E05] Ehrgott M.: Multicriteria Optimization. Second Edition; Springer; Berlin; Heidelberg; Germany; 2005.
[E12] EUROSYSLIB; ITEA2 06020; www.eurosyslib.com.
[EOM+05] Elmqvist H.; Olsson H.; Mattsson S. E.; BrĂĽck D.; Schweiger C.; Joos D. and Otter M.: Optimization for Design and Parameter Estimation. Proc. of 4th International Modelica Conference; pp. 255-266; Hamburg; Germany; 2005.
[J11] Joos H.-D.: MOPS - Multi-Objective Parameter Synthesis; User’s Guide V6.2. Institute of Robotics and Mechatronics; DLR Oberpfaffenhofen; Germany; 2011.
[JBL+02] Joos H.-D.; Bals J.; Looye G.; Schnepper K. and Varga A.: A Multi-Objective Optimisation based Software Environment for Control System Design. Proc. IEEE International Conference on Control Applications; pp. 7-14; Glasgow; Scotland; Sept. 18-20; 2002.
[K10] Köppern J.: Integrierte Fahrzeugregelung durch einen hybriden Ansatz aus inversem Modell und modellprädiktiver Optimierung. GMA-Fachausschuss 1.40 "Theoretische Verfahren der Regelungstechnik"; Salzburg; Austria; 2010.
[LAS97] Lewis A; Abramson D. and Simpson R.; Parallel non-linear optimization: Towards the design of a decision support system for air quality management. Proc. of IEEE Supercomputing 97; San Jose; USA; 1997. doi: 10.1145/509593.509634.
[OT88] Otter M. and TĂĽrk S.: The DFVLR Models 1 and 2 of the Manutec r3 Robot. DFVLRMitteilung 88-13; Institut fĂĽr Dynamik der Flugsysteme; DLR Oberpfaffenhofen; Germany; 1988.
[R11] Reiner M.: Modellierung und Steuerung von strukturelastischen Robotern. Ph.D. thesis; University of Technology; Munich; 2011.
[TOB01] ThĂĽmmel M.; Otter M. and Bals J.: Control of Robots with Elastic Joints based on Automatic Generation of Inverse Dynamics Models. Proc. of IROS; pp. 925-930; Maui; Hawaii; USA; 2001.
[TNT+11] Thieriot H.; Nemer M.; Torabzadeh-Tari M.; Fritzson P.; Singh R. and Kocherry J. J.: Towards Design Optimization with OpenModelica Emphasizing Parameter Optimization with Genetic Algorithms. Proc. of 8th International Modelica Conference; pp. 756-762; Dresden; Germany; 2011.

Proceedings of the 9th International MODELICA Conference; September 3-5; 2012; Munich; Germany

Author:
Andreas Pfeiffer
Title:
Optimization Library for Interactive Multi-Criteria Optimization Tasks
DOI:
10.3384/ecp12076669
Note: the following are taken directly from CrossRef
Citations:
  • Clemens Satzger, Jonathan Brembec & Martin Otter (2013). Framework for the Evaluation of Wheel Torque Blending Algorithms. IFAC Proceedings Volumes, 46(21): 347. DOI: 10.3182/20130904-4-JP-2042.00037
  • Alberto de la Calle, Lidia Roca, Javier Bonill & Patricia Palenzuela (2016). Dynamic modeling and simulation of a double-effect absorption heat pump. International Journal of Refrigeration, : . DOI: 10.1016/j.ijrefrig.2016.07.018