Article | Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany | Nonlinear Observers based on the Functional Mockup Interface with Applications to Electric Vehicles Linköping University Electronic Press Conference Proceedings
Göm menyn

Title:
Nonlinear Observers based on the Functional Mockup Interface with Applications to Electric Vehicles
Author:
Jonathan Brembeck: German Aerospace Center (DLR) Oberpfaffenhofen, Insitute of Robotics and Mechatronics, Germany Martin Otter: German Aerospace Center (DLR) Oberpfaffenhofen, Insitute of Robotics and Mechatronics, Germany Dirk Zimmer: German Aerospace Center (DLR) Oberpfaffenhofen, Insitute of Robotics and Mechatronics, Germany
DOI:
10.3384/ecp11063474
Download:
Full text (pdf)
Year:
2011
Conference:
Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany
Issue:
063
Article no.:
053
Pages:
474-483
No. of pages:
10
Publication type:
Abstract and Fulltext
Published:
2011-06-30
ISBN:
978-91-7393-096-3
Series:
Linköping Electronic Conference Proceedings
ISSN (print):
1650-3686
ISSN (online):
1650-3740
Publisher:
Linköping University Electronic Press; Linköpings universitet


Export in BibTex, RIS or text

At DLR; an innovative electric vehicle is being developed that requires advanced; nonlinear control systems for proper functioning. Once central aspect is the use of nonlinear observers for several modules. A generic concept was developed and implemented in a prototype to automatically generate a nonlinear observer model in Modelica; given a contiuous (usually nonlinear) Modelica model of the physical system to be observed. The approach is based on the Functional Mockup Interface (FMI); by exporting the model in FMI format and importing it again in a form that enables the application of different observer designs; like EKF and UKF nonlinear Kalman Filters. The approach is demonstrated at hand of an observer for nonlinear battery model of the elctric vehicle of DLR.

Keywords: FMI; FMU; Kalman Filter; EKF; UKF

Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany

Author:
Jonathan Brembeck, Martin Otter, Dirk Zimmer
Title:
Nonlinear Observers based on the Functional Mockup Interface with Applications to Electric Vehicles
DOI:
http://dx.doi.org/10.3384/ecp11063474
References:

[And04] André M. (2004): The ARTEMIS European driving cycles for measuring car pollutant emissions. Science of The Total Environment; 334-335; pp. 73-84. doi: 10.1016/j.scitotenv.2004.04.070.

[Bre11] Brembeck J.; Ho L. M.; Schaub A.; Satzger C.; Hirzinger P. G. (2011): ROMO – the robotic electric vehicle. IAVSD; Aug. 14-19; accepted for publication.

[Bre11b] Brembeck J.; Wielgos S. (2011): A real time capable battery model (mESC) for electro mobility applications using optimal estimation methods. Modelica’2011 Conference; March 20-22.

[Eng10] Engst C. (2010): Object-Oriented Modelling and Real-Time Simulation of an Electric Vehicle in Modelica. Master Thesis; Technische Universität München; Lehrstuhl für elektrische Antriebssysteme und Leistungselektronik. Supervisors: J. Brembeck; M. Otter; R. Kennel.

[FMI10] The Functional Mock-up Interface for Model Exchange;Version 1.0 (2010). ITEA2 MODELISAR Project. Download: www.functional-mockup-interface.org/fmi.html

[FMI11] Blochwitz T.; Otter M.; Arnold M.; Bausch C; Clauß C.; Elmqvist H.; Junghanns A.; Mauss J.; Monteiro M.; Neidhold T.; Neumerkel D.; Olsson H.; Peetz J.-V.; Wolf S. (2011): The Functional Mockup Interface for Tool independent Exchange of Simulation Models. Modelica’2011 Conference; March 20-22.

[Kan08] Kandepu R.; Imsland L.; Foss B. (2008): Constrained state estimation using the Unscented Kalman Filter. Proceedings of the 16th Mediterranean Conference on Control and Automation; pp. 1453-1458; June 25-27. doi: 10.1109/MED.2008.4602001.

[Lap99] Anderson E.; Bai Z.; Bischof C.; Blackford S.; Demmel J.; Dongarra J.; Du Croz J.; Greenbaum A.; Hammarling S.; McKenney A.; Sorensen D. (1999): Lapack Users’ Guide. Third Edition; SIAM. Download: http://www.netlib.org/lapack

[Lar98] Larsen T. D.; Andersen N. A.; Ravn O.; Poulsen N. K. (1998): Incorporation of time delayed measurements in a discrete-time Kalman filter. Proceedings of the 37th IEEE Conference on Decision and Control; vol. 4; pp. 3972-3977; Dec. 16-18.

[Lju98] Ljung; L. (1998): System Identification: Theory for the User. Prentice Hall; 2nd Edition.

[Mer01] Merwe R. V.; Wan E. (2001): The square-root unscented Kalman filter for state and parameter-estimation. Proceedings of the International Conference on Acoustics; Speech; and Signal Processingvol. 6; pp. 3461-3464.

[Mer04] Merwe R. V.; Wan E.; Julier S. (2004): Sigma-Point Kalman Filters for Nonlinear Estimation and Sensor-Fusion: Applications to Integrated Navigation. Proceedings of the AIAA Guidance Navigation & Control Conference; Providence; RI; Aug 2004. Download: http://www.csee.ogi.edu/~rudmerwe/pubs/pdf/vanderMerwe_GNC2004.pdf

[Mod10] Modelica Association (2010): Modelica – A Unified Object-Oriented Language for Physical Systems Modeling. Language Specification; Version 3.2. March 24; 2010. Download: https://www.modelica.org/documents/ModelicaSpec32.pdf.

[Phy10] Phython 3.1.2- Documentation (2010): Download: http://docs.python.org/py3k/

[Sim06] Simon D. (2006): Optimal State Estimation: Kalman; H Infinity; and Nonlinear Approaches. John Wiley & Sons Inc. doi: 10.1002/0470045345.

[Sim09] Simon D. (2010): Kalman filtering with state constraints: a survey of linear and nonlinear algorithms. IET Control Theory & Applications; vol. 4; no. 8; pp. 1303-1318; Aug. doi: 10.1049/iet-cta.2009.0032.

Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany

Author:
Jonathan Brembeck, Martin Otter, Dirk Zimmer
Title:
Nonlinear Observers based on the Functional Mockup Interface with Applications to Electric Vehicles
DOI:
https://doi.org10.3384/ecp11063474
Note: the following are taken directly from CrossRef
Citations:
  • Michael Fleps-Dezass & Jonathan Brembeck (2013). Model based vertical dynamics estimation with Modelica and FMI. IFAC Proceedings Volumes, 46(21): 341. DOI: 10.3182/20130904-4-JP-2042.00086


  • Responsible for this page: Peter Berkesand
    Last updated: 2019-10-02