Article | Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany | Development of a Modelica Library for Simulation of Diffractive Optomechatronic Systems Linköping University Electronic Press Conference Proceedings
Göm menyn

Title:
Development of a Modelica Library for Simulation of Diffractive Optomechatronic Systems
Author:
Thomas Kaden: Technische Universität Dresden, Institute of Automation, Faculty of Electrical Engineering, Germany Klaus Janschek: Technische Universität Dresden, Institute of Automation, Faculty of Electrical Engineering, Germany
DOI:
10.3384/ecp11063199
Download:
Full text (pdf)
Year:
2011
Conference:
Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany
Issue:
063
Article no.:
023
Pages:
199-206
No. of pages:
8
Publication type:
Abstract and Fulltext
Published:
2011-06-30
ISBN:
978-91-7393-096-3
Series:
Linköping Electronic Conference Proceedings
ISSN (print):
1650-3686
ISSN (online):
1650-3740
Publisher:
Linköping University Electronic Press; Linköpings universitet


Export in BibTex, RIS or text

The proper operation and performance of optomechatronic systems is fundamentally affected by changes of the relative geometry caused by thermal influences; mechanical displacements and vibrations. Such extrinsic and intrinsic disturbances can be compensated by active control of optical elements like lenses; diffraction gratings or laser sources. In the context with system design and performance analysis tasks it is big challenge to model and simulate the coupled optomechatronic behavior including closed-loop control and disturbances properly on a representative level.

A promising approach is the integration of diffractive optic models in the well established physical object oriented modeling environment Modelica®; which offers already a broad support of multidomain libraries; e.g. electrical; mechanical and thermal.

Therefore the basic modeling requirements for diffractive optical elements are outlined followed by a discussion of possible problems and solutions for a computationally efficient implementation of a twodimensional spatial optical library for Modelicabased simulation environments.

Keywords: Modelica; Diffractive Optics; Optical library

Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany

Author:
Thomas Kaden, Klaus Janschek
Title:
Development of a Modelica Library for Simulation of Diffractive Optomechatronic Systems
DOI:
http://dx.doi.org/10.3384/ecp11063199
References:

[1] Dyblenko; S. (2009). Optische Analyse von Bahnwaren mittels ; Spektralmethoden - Lösungen und Anwendungen. Technical report; IPP Symposium; Fakultät Elektrotrotechnik und Informationstechnik; TU Dresden

[2] Fritzson; P. (2004). Principles of Object-Oriented Modeling and Simulation with Modelica 2.1. IEEE Press. doi: 10.1109/9780470545669.

[3] Goodman; J.W. (2005). Indroduction to Fourier Optics. The McGraw-Hall Companies; 3d edition

[4] Hardy; J.W. (1998). Adaptive Optics for Astronomical Telescopes; Oxford University Press

[5] Hecht; E. (2002). Optik; Oldenburg Wissenschaftsverlag; ISBN 3-486-27359-0

[6] Janschek; K. (2010). Systementwurf mechatronischer Systeme: Methoden - Modelle – Konzepte; Springer. doi: 10.1007/978-3-540-78877-5.

[7] Janschek; K.; S. Dyblenko; V. Tchernykh; and T. Kaden (2007). Robuste Verfahren zur Bildaufnahme und Bildauswertung bei Online Messung der Papierformation auf Traversierrahmen. VDI-Berichte; 1981:57–66.

[8] Janschek; K.; V. Tchernykh and S. Dyblenko (2007). Performance analysis of optomechatronic image stabilization for a compact space camera. Control Engineering Practice 15(3 SPEC. ISS.): 333-347. doi: 10.1016/j.conengprac.2006.02.010.

[9] Janschek; K. and V. Tchernykh (2002). Optical correlator for image motion compensation in the focal plane of a satellite camera. Space Technology; 21(4):127-132

[10] Juday; D.R. and Florence; M.J. (1991). Full complex modulation with two one-parameter SLMs; SPIE; vol. 1558; pp. 499-503. doi: 10.1117/12.49656.

[11] Sommerfeld A. (1999); Vorlesungen über theoretische Physik – 4; Optik. Akad. Verlag Geest u. Portig; 3rd edition

[12] Tommasi; T and B.Bianco (1992). Frequency analysis of light difffraction between rotated planes. Optics Letters; vol. 17; nr. 8

[13] Matsushima K. (2008). Formulation of the rotational transformation of wave fields and their application to digital holography. Applied Optics; vol. 47; nr. 19. doi: 10.1364/AO.47.00D110.

[14] Modelica (2010). The MODELICA Language Specification; Version 3.2; www.modelica.org

[15] Saldami; L.; Bachmann; P. Fritzson; P. and Wiesmann H. (2005). A Framework for Describing and Solving PDE Models in Modelica; 4th international Modelica Conference; Hamburg; March 7-8

[16] Uhlig.A; Beutlich; Blochwitz; Kurzbach and Naehring (2009). Modellierung und Simulation mit Modelica in SimulationX; www.iti.de

[17] Zemax (2010); software for optical system design. www.zemax.com

[18] http://www.fftw.org/

Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany

Author:
Thomas Kaden, Klaus Janschek
Title:
Development of a Modelica Library for Simulation of Diffractive Optomechatronic Systems
DOI:
https://doi.org10.3384/ecp11063199
Note: the following are taken directly from CrossRef
Citations:
No citations available at the moment


Responsible for this page: Peter Berkesand
Last updated: 2019-10-02