Article | Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany | Master for Co-Simulation Using FMI Linköping University Electronic Press Conference Proceedings
Göm menyn

Title:
Master for Co-Simulation Using FMI
Author:
Jens Bastian: Fraunhofer Institute for Integrated Circuits IIS / Design Automation Division EAS, Germany Christop Clauß: Fraunhofer Institute for Integrated Circuits IIS / Design Automation Division EAS, Germany Susann Wolf: Fraunhofer Institute for Integrated Circuits IIS / Design Automation Division EAS, Germany Peter Schneider: Fraunhofer Institute for Integrated Circuits IIS / Design Automation Division EAS, Germany
DOI:
10.3384/ecp11063115
Download:
Full text (pdf)
Year:
2011
Conference:
Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany
Issue:
063
Article no.:
014
Pages:
115-120
No. of pages:
6
Publication type:
Abstract and Fulltext
Published:
2011-06-30
ISBN:
978-91-7393-096-3
Series:
Linköping Electronic Conference Proceedings
ISSN (print):
1650-3686
ISSN (online):
1650-3740
Publisher:
Linköping University Electronic Press; Linköpings universitet


Export in BibTex, RIS or text

Co-Simulation is a general approach to simulate coupled technical systems. In a master-slave concept the slaves simulate sub-problems whereas the master is responsible for both coordinating the overall simulation as well as transferring data. To unify the interface between master and slave the FMI for Co-Simulation was developed. Using FMI a master was implemented with simple and advanced algorithms which can be applied depending on the properties of the involved slave simulators. The master was tested amongst others by coupling with SimulationX.

Keywords: co-simulation; FMI; master

Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany

Author:
Jens Bastian, Christop Clauß, Susann Wolf, Peter Schneider
Title:
Master for Co-Simulation Using FMI
DOI:
http://dx.doi.org/10.3384/ecp11063115
References:

[1] Wolf; S.; Blochwitz; T.: Master Slave Simulator Coupling. ITI Symposium 2010.

[2] Schierz; T.; Arnold; M.: Advanced numerical methods for co-simulation algorithms in vehicle system dynamics. 1st Conference on Multiphysics Simulation; Bonn 2010.

[3] Functional Mock-up Interface for Co-Simulation v1.0; MODELISAR consortium; 2010. http://functional-mockup-interface.org

[4] Arnold; M.; Blochwitz; T.; Clauß; C.; Neidhold; T.; Schierz; T.; Wolf; S.: FMI-for-CoSimulation. 1st Conference on Multiphysics Simulation; Bonn; 2010.

[5] Enge-Rosenblatt; O.; Clauß; C.; Schneider; A.; Schneider; P.: Functional Digital Mockup and the Functional Mock-up Interface – Two Complementary Approaches for a Comprehensive Investigation of Heterogeneous Systems. 8th International Modelica Conference; Dresden; 2011.

[6] http://www.modelisar.org

[7] http://www.simulationx.com

[8] http://www.openmp.org

[9] Schierz; T.; Arnold; M.; Eichberger; A.; Friedrich; M.: Study on Theoretical and Practical Aspects of Communication Stepsize Control. MODELISAR; sWP203 report; 2010.

Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany

Author:
Jens Bastian, Christop Clauß, Susann Wolf, Peter Schneider
Title:
Master for Co-Simulation Using FMI
DOI:
https://doi.org10.3384/ecp11063115
Note: the following are taken directly from CrossRef
Citations:
  • Cláudio Gomes, Casper Thule, David Broman, Peter Gorm Larse & Hans Vangheluwe (2018). Co-Simulation. ACM Computing Surveys, 51(3): 1. DOI: 10.1145/3179993
  • S. Sicklinger, V. Belsky, B. Engelmann, H. Elmqvist, H. Olsson, R. Wüchne & K.-U. Bletzinger (2014). Interface Jacobian-based Co-Simulation. International Journal for Numerical Methods in Engineering, 98(6): 418. DOI: 10.1002/nme.4637
  • Fabio Cremona, Marten Lohstroh, David Broman, Edward A. Lee, Michael Masi & Stavros Tripakis (2019). Hybrid co-simulation: it’s about time. Software & Systems Modeling, 18(3): 1655. DOI: 10.1007/s10270-017-0633-6
  • Tobias Jung, Payal Sha & Michael Weyrich (2018). Dynamic Co-Simulation of Internet-of-Things-Components using a Multi-Agent-System. Procedia CIRP, 72: 874. DOI: 10.1016/j.procir.2018.03.084
  • Oppelt Mathias, Wolf Gerrit, Drumm Oliver, Lutz Benjamin, Stöß Marku & Urbas Leon (2014). Automatic Model Generation for Virtual Commissioning based on Plant Engineering Data. IFAC Proceedings Volumes, 47(3): 11635. DOI: 10.3182/20140824-6-ZA-1003.01512
  • Xi Zheng, Christine Julien, Hongxu Chen, Rodion Podorozhn & Franck Cassez (2017). Real-Time Simulation Support for Runtime Verification of Cyber-Physical Systems. ACM Transactions on Embedded Computing Systems, 16(4): 1. DOI: 10.1145/3063382
  • Ken Pierce, Carl Gamble, John Fitzgeral & Georgios Zervakis (2018). Engineering Cyber-Physical Swarms with Collaborative Modelling. INCOSE International Symposium, 28(1): 1052. DOI: 10.1002/j.2334-5837.2018.00533.x
  • Marta Plaza Beltrán (2013). Origen, vías de penetración y expansión de cruces y cruceros en la Península Ibérica. Hispania Sacra, 65(131): 7. DOI: 10.3989/hs.2013.001
  • Veronika Brandstette & Jan Christoph Wehrstedt (2018). A Framework for Multidisciplinary Simulation of Cyber-Physical Production Systems. IFAC-PapersOnLine, 51(11): 809. DOI: 10.1016/j.ifacol.2018.08.418


  • Responsible for this page: Peter Berkesand
    Last updated: 2019-11-06