Article | Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany | The Functional Mockup Interface for Tool independent Exchange of Simulation Models Linköping University Electronic Press Conference Proceedings
Göm menyn

Title:
The Functional Mockup Interface for Tool independent Exchange of Simulation Models
Author:
T. Blochwitz: ITI GmbH, Dresden, Germany M. Otter: DLR Oberpfaffenhofen, Germany M. Arnold: University of Halle, Germany C. Bausch: Atego Systems GmbH, Wolfsburg, Germany H. Elmqvist: Dassault Systèmes, Lund, Sweden A. Junghanns: QTronic, Berlin, Germany J. Mauß: QTronic, Berlin, Germany M. Monteiro: Atego Systems GmbH, Wolfsburg, Germany T. Neidhold: ITI GmbH, Dresden, Germany D. Neumerkel: Daimler AG, Stuttgart, Germany H. Olsson: Dassault Systèmes, Lund, Sweden J.-V. Peetz: Fraunhofer SCAI, St. Augustin, Germany S. Wolf: Fraunhofer IIS EAS, Dresden, Germany C. Clauß: Fraunhofer IIS EAS, Dresden, Germany
DOI:
10.3384/ecp11063105
Download:
Full text (pdf)
Year:
2011
Conference:
Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany
Issue:
063
Article no.:
013
Pages:
105-114
No. of pages:
10
Publication type:
Abstract and Fulltext
Published:
2011-06-30
ISBN:
978-91-7393-096-3
Series:
Linköping Electronic Conference Proceedings
ISSN (print):
1650-3686
ISSN (online):
1650-3740
Publisher:
Linköping University Electronic Press; Linköpings universitet


Export in BibTex, RIS or text

The Functional Mockup Interface (FMI) is a tool independent standard for the exchange of dynamic models and for co-simulation. The development of FMI was initiated and organized by Daimler AG within the ITEA2 project MODELISAR. The primary goal is to support the exchange of simulation models between suppliers and OEMs even if a large variety of different tools are used. The FMI was developed in a close collaboration between simulation tool vendors and research institutes. In this article an overview about FMI is given and technical details about the solution are discussed.

Keywords: Simulation; Co-Simulation; Model Exchange; MODELISAR; Functional Mockup Interface (FMI); Functional Mockup Unit (FMU)

Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany

Author:
T. Blochwitz, M. Otter, M. Arnold, C. Bausch, H. Elmqvist, A. Junghanns, J. Mauß, M. Monteiro, T. Neidhold, D. Neumerkel, H. Olsson, J.-V. Peetz, S. Wolf, C. Clauß
Title:
The Functional Mockup Interface for Tool independent Exchange of Simulation Models
DOI:
http://dx.doi.org/10.3384/ecp11063105
References:

[1] Modelica Association: Modelica – A Unified Object-Oriented Language for Physical Systems Modeling. Language Specification; Version 3.2. March 24; 2010. Download: https://www.modelica.org/documents/ModelicaSpec32.pdf

[2] VHDL-AMS: IEEE Std 1076.1-2007. Nov. 15; 2007. VHDL-AMS web page: http://www.vhdl.org/vhdl-ams/

[3] The Mathworks: Manual: Writing S-Functions; 2002

[4] Using ADAMS/Solver Subroutines. Mechanical Dynamics; Inc.; 1998.

[5] A. Junghanns: Virtual integration of Automotive Hard- and Software with Silver. ITI-Symposium; 24.-25.11.2010; Dresden.

[6] http://www.simpack.com

[7] Blochwitz T.; Kurzbach G.; Neidhold T. An External Model Interface for Modelica. 6th International Modelica Conference; Bielefeld 2008. www.modelica.org/events/modelica2008/Proceedings/sessions/session5f.pdf

[8] MODELISAR Consortium: Functional Mock-up Interface for Model Exchange. Version 1.0; www.functional-mockup-interface.org

[9] MODELISAR Consortium: Functional Mock-up Interface for Co-Simulation. Version 1.0; October 2010; www.functional-mockup-interface.org

[10] OPENPROD - Open Model-Driven Whole-ProductDevelopment and Simulation Environment; www.openprod.org

[11] Ch. Noll; T. Blochwitz; Th. Neidhold; Ch. Kehrer: Implementation of Modelisar Functional Mock-up Interfaces in SimulationX. 8th International Modelica Conference. Dresden 2011.

[12] J. Bastian; Ch. Clauß; S. Wolf; P. Schneider: Master for Co-Simulation Using FMI. 8th International Modelica Conference. Dresden 2011.

Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany

Author:
T. Blochwitz, M. Otter, M. Arnold, C. Bausch, H. Elmqvist, A. Junghanns, J. Mauß, M. Monteiro, T. Neidhold, D. Neumerkel, H. Olsson, J.-V. Peetz, S. Wolf, C. Clauß
Title:
The Functional Mockup Interface for Tool independent Exchange of Simulation Models
DOI:
https://doi.org10.3384/ecp11063105
Note: the following are taken directly from CrossRef
Citations:
  • A.W.M. (Jos) van Schijndel (2014). A review of the application of SimuLink S-functions to multi domain modelling and building simulation. Journal of Building Performance Simulation, 7(3): 165. DOI: 10.1080/19401493.2013.804122
  • Andreas Himmler, Lars Stockman & Dominik Holler (2016). Communication Infrastructure for Hybrid Test Systems - Demands, Options, and Current Discussions. SAE International Journal of Aerospace, 9(1): 134. DOI: 10.4271/2016-01-2051
  • Tobias Jun & Michael Weyrich (2019). Synchronization of a “Plug-and-Simulate”-capable Co-Simulation of Internet-of-Things-Components. Procedia CIRP, 79: 367. DOI: 10.1016/j.procir.2019.02.090
  • Günter Kunze (2013). Mobile Baumaschinen Entwicklungen und Forschungsschwerpunkte. ATZoffhighway, 6(1): 4. DOI: 10.1365/s35746-013-0054-6
  • Thomas Anstötz, Christian Haupt, Thomas Ill & Carsten Intra (2017). Längsdynamiksimulation zur Effizienzsteigerung von Nutzfahrzeugen. ATZ - Automobiltechnische Zeitschrift, 119(11): 16. DOI: 10.1007/s35148-017-0126-5
  • Matthias Bartelt, Adrian Schyj & Bernd Kuhlenkötter (2014). More than a Mockup. Production Engineering, 8(6): 727. DOI: 10.1007/s11740-014-0575-6
  • F. De Filippo, A. Stork, H. Schmed & F. Bruno (2014). A modular architecture for a driving simulator based on the FDMU approach. International Journal on Interactive Design and Manufacturing (IJIDeM), 8(2): 139. DOI: 10.1007/s12008-013-0182-3
  • Peter Palensky, Edmund Widl, Matthias Stifte & Atiyah Elsheikh (2013). Modeling Intelligent Energy Systems: Co-Simulation Platform for Validating Flexible-Demand EV Charging Management. IEEE Transactions on Smart Grid, 4(4): 1939. DOI: 10.1109/TSG.2013.2258050
  • Jaclyn M. Branscomb, Christiaan J.J. Paredis, Judy Ch & Mark J. Jennings (2013). Supporting Multidisciplinary Vehicle Analysis Using a Vehicle Reference Architecture Model in SysML. Procedia Computer Science, 16: 79. DOI: 10.1016/j.procs.2013.01.009
  • Cláudio Gomes, Casper Thule, David Broman, Peter Gorm Larse & Hans Vangheluwe (2018). Co-Simulation. ACM Computing Surveys, 51(3): 1. DOI: 10.1145/3179993
  • Severin Sadjina, Lars Tandle Kyllingstad, Martin Rindarøy, Stian Skjong, Vilmar Æsø & Eilif Pedersen (2019). Distributed Co-simulation of Maritime Systems and Operations. Journal of Offshore Mechanics and Arctic Engineering, 141(1): . DOI: 10.1115/1.4040473
  • Fabio Cremona, Marten Lohstroh, David Broman, Edward A. Lee, Michael Masi & Stavros Tripakis (2019). Hybrid co-simulation: it’s about time. Software & Systems Modeling, 18(3): 1655. DOI: 10.1007/s10270-017-0633-6
  • Simon Bliudze, Sébastien Furic, Joseph Sifaki & Antoine Viel (2019). Rigorous design of cyber-physical systems. Software & Systems Modeling, 18(3): 1613. DOI: 10.1007/s10270-017-0642-5
  • Gregorio Lopez, Javier Matanza, David De La Vega, Marta Castro, Amaia Arrinda, Jose Ignacio Moren & Alberto Sendin (2019). The Role of Power Line Communications in the Smart Grid Revisited: Applications, Challenges, and Research Initiatives. IEEE Access, 7: 117346. DOI: 10.1109/ACCESS.2019.2928391
  • Imco van Gent, Gianfranco La Rocc & Maurice F. M. Hoogreef (2018). CMDOWS: a proposed new standard to store and exchange MDO systems. CEAS Aeronautical Journal, 9(4): 607. DOI: 10.1007/s13272-018-0307-2
  • Stian Skjong, Martin Rindarøy, Lars T. Kyllingstad, Vilmar Æsø & Eilif Pedersen (2018). Virtual prototyping of maritime systems and operations: applications of distributed co-simulations. Journal of Marine Science and Technology, 23(4): 835. DOI: 10.1007/s00773-017-0514-2
  • Markus Tranninger, Georg Stettinger, Martin Benedik & Martin Horn (2018). Diagnosis of Interconnected Systems via well tuned Model-Based Coupling Algorithms. IFAC-PapersOnLine, 51(24): 1271. DOI: 10.1016/j.ifacol.2018.09.571
  • Stefan-Alexander Schneide & Kmeid Saad (2018). Camera behavioral model and testbed setups for image-based ADAS functions. e & i Elektrotechnik und Informationstechnik, 135(4-5): 328. DOI: 10.1007/s00502-018-0622-7
  • Salah Eddine Saidi, Nicolas Pernet, Yves Sorel, A. Anciaux-Sedrakia & Q. H. Tran (2019). A method for parallel scheduling of multi-rate co-simulation on multi-core platforms. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, 74: 49. DOI: 10.2516/ogst/2019009
  • Philipp Petr, Wilhelm Tegethof & Jürgen Köhler (2017). Method for designing waste heat recovery systems (WHRS) in vehicles considering optimal control. Energy Procedia, 129: 232. DOI: 10.1016/j.egypro.2017.09.147
  • A. Holmqvist, F. Magnusso & S. Stenström (2014). Scale-up analysis of continuous cross-flow atomic layer deposition reactor designs. Chemical Engineering Science, 117: 301. DOI: 10.1016/j.ces.2014.07.002
  • Javier Bonilla, Lidia Roca, Diego López, Eduardo Cerrajero, Santiago Mirabal, Silvia Padilla, Luis E. Díez, Alberto R. Roch & Lucía González (2016). Operation and Training Tool for a Gas - Molten Salt Heat Recovery Demonstrator Facility. Procedia Computer Science, 83: 1118. DOI: 10.1016/j.procs.2016.04.232
  • Pengfei Li, Yaoyu Li, John E. Seem, Hongtao Qiao, Xiao L & Jon Winkler (2014). Recent advances in dynamic modeling of HVAC equipment. Part 2: Modelica-based modeling. HVAC&R Research, 20(1): 150. DOI: 10.1080/10789669.2013.836876
  • Awad Mukbil, Umut Dura & Sven Hartmann (2019). Conformance testing of FMI calling sequence for simulation environments. International Journal of Modeling, Simulation, and Scientific Computing, 10(02): 1950008. DOI: 10.1142/S1793962319500089
  • Severin Sadjina, Lars T. Kyllingstad, Stian Skjon & Eilif Pedersen (2017). Energy conservation and power bonds in co-simulations: non-iterative adaptive step size control and error estimation. Engineering with Computers, 33(3): 607. DOI: 10.1007/s00366-016-0492-8
  • Roel De Coninck, Fredrik Magnusson, Johan Åkesso & Lieve Helsen (2016). Toolbox for development and validation of grey-box building models for forecasting and control. Journal of Building Performance Simulation, 9(3): 288. DOI: 10.1080/19401493.2015.1046933


  • Responsible for this page: Peter Berkesand
    Last updated: 2019-10-02