Article | Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany | Improving Newtonand#8217;s method for Initialization of Modelica models Linköping University Electronic Press Conference Proceedings
Göm menyn

Title:
Improving Newtonand#8217;s method for Initialization of Modelica models
Author:
Johan Ylikiiskilä: Modelon AB, Lund, Sweden Johan Åkesson: Departement of Automatic Control, Lund University, Sweden Claus Führer: Departement of Numerical Analysis, Lund University, Sweden
DOI:
10.3384/ecp1106397
Download:
Full text (pdf)
Year:
2011
Conference:
Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany
Issue:
063
Article no.:
012
Pages:
97-104
No. of pages:
8
Publication type:
Abstract and Fulltext
Published:
2011-06-30
ISBN:
978-91-7393-096-3
Series:
Linköping Electronic Conference Proceedings
ISSN (print):
1650-3686
ISSN (online):
1650-3740
Publisher:
Linköping University Electronic Press; Linköpings universitet


Export in BibTex, RIS or text

Initializing a model written in Modelica translates to nding consistent initial values to the underlyinDAE. Adding initial equations and conditions creates a system of non-linear equations that can be solved for the initial conguration. This pap reports an implementation of Newton’s method to solve the non-linear initialization system. This implementation also uses a regularization method to deal with singular Jacobians as well as sparse solvers to exploit the sparsity structure of the Jacobian. The implementation is based on the opensource projects Jmodelica.org and Assimulo; KINSOL from the SUNDIALS suite and SuperLU.

Keywords: Initialization; Newton’s method; regularization; Jmodelica.org; Assimulo; KINSOL; SuperLU

Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany

Author:
Johan Ylikiiskilä, Johan Åkesson, Claus Führer
Title:
Improving Newtonand#8217;s method for Initialization of Modelica models
DOI:
http://dx.doi.org/10.3384/ecp1106397
References:

[1] The assimulo homepage. http://www.jmodelica.org/page/199 .

[2] The coconut benchmark: Library 3 constraint satisfaction test problems. http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Library3_new_v1.html .

[3] The cppad webpage. http://www.coin-or.org/CppAD/ .

[4] Stefan Behnel; Robert Bradshaw; Dag Sverre Seljebotn; and other contributors. Cython cextensions for python - homepage. http://www.cython.org/.

[5] Aaron M. Collier; Alan C. Hindmarshand Radu Serban; and Carol S. Woodward. User Documentation for kinsol v2.6.0. Center for Applied Scientific Computing; Lawrence Livermore National Laboratory; May 2009.

[6] The SciPy community. SciPy Reference Guide; 0.9.0.dev6665 edition; October 2010.

[7] J.E. Dennis and R.B. Schnabel. Numerical methods for unconstrained optimization and nonlinear equations. Prentice Hall; 1983.

[8] Hilding Elmqvist. A Structured Model Language for Large Continuous Systems. PhD thesis; Department of Automatic Control; Lund University; Sweden; may 1978. TFRT-1015.

[9] Jan Eriksson. A note on the decomposition of systems of sparse non-linear equations. BIT Numerical Mathematics; 16(4):462-465; 1976. 10.1007/BF01932730.

[10] Jinyan Fan and Jianyu Pan. A note on the levenberg-marquardt parameter. Applied Mathematics and Computation; 207:351-359; 2009.

[11] John E. Hopcroft and Richard M. Karp. An 2=5 algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing; 2(4):225-231; 1973.

[12] X. S. L. W. Demmel James W. Demmel; John R. Gilbert; Stanley C. Eisenstat; John R. Gilbert; Xiaoye S. Li; and Joseph W. H. Liu. A supernodal approach to sparse partial pivoting. SIAM J. MATRIX ANAL. APPL; 20(3):720-755; 1999.

[13] Xiaoye S. Li James W. Demmel; John R. Gilbert. SuperLU Users Guide.

[14] Johan Åkesson; Karl-Erik Årzén; Magnus Gäfvert; Tove Bergdahl; and Hubertus Tummescheit. Modeling and optimization with optimica and jmodelica.org - languages and tools for solving large-scale dynamic optimization problem. Computers and Chemical Engineering; 34(11):1737-1749; nov 2010.

[15] K. Levenberg. A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math.; 2:164-166; 1944.

[16] D.W. Marquardt. An algorithm for leastsquares estimation of nonlinear inequalities. SIAM J. Appl. Math.; 11:431-441; 1963.

[17] S.E Mattson; H. Elmqvist; M. Otter; and H. Olsson. Initialization of hybrid differential-algebraic equations in modelica 2.0. In Second International Modelica Conferencem; Proceedings; pages 9-15. The Modelica Association; March 2002.

[18] Sven Erik Mattsson and Gustaf Söderlind. Index reduction in differential-algebraic equations using dummy derivatives. SIAM J. Sci. Comput; 14(3):677-692; May 1993.

[19] Arnold Neumaier. Solving ill-conditioned and singular linear systems: A tutorial on regularization. SIAM Review; 40(3):636-666; September 1998.

[20] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer; 2006.

Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany

Author:
Johan Ylikiiskilä, Johan Åkesson, Claus Führer
Title:
Improving Newtonand#8217;s method for Initialization of Modelica models
DOI:
https://doi.org10.3384/ecp1106397
Note: the following are taken directly from CrossRef
Citations:
No citations available at the moment


Responsible for this page: Peter Berkesand
Last updated: 2019-06-04