Article | Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany | Automated Simulation of Modelica Models with QSS Methods : The Discontinuous Case Link�ping University Electronic Press Conference Proceedings
Göm menyn

Title:
Automated Simulation of Modelica Models with QSS Methods : The Discontinuous Case
Author:
François E. Cellier: Department of Computer Science, ETH Zurich, Switzerland Xenofon Floros: Department of Computer Science, ETH Zurich, Switzerland Federico Bergero: Laboratorio de Sistemas Dinámicos, FCEIA, Universidad Nacional de Rosario, Argentina Ernesto Kofman: Laboratorio de Sistemas Dinámicos, FCEIA, Universidad Nacional de Rosario, Argentina
DOI:
10.3384/ecp11063657
Download:
Full text (pdf)
Year:
2011
Conference:
Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany
Issue:
063
Article no.:
73,
Pages:
657-667
No. of pages:
11
Publication type:
Abstract and Fulltext
Published:
2011-06-30
ISBN:
978-91-7393-096-3
Series:
Linköping Electronic Conference Proceedings
ISSN (print):
1650-3686
ISSN (online):
1650-3740
Publisher:
Linköping University Electronic Press; Linköpings universitet


Export in BibTex, RIS or text

This study describes the current implementation of an interface that automatically translates a discontinuous model described using the Modelica language into the Discrete Event System Specification (DEVS) formalism. More specifically; the interface enables the automatic simulation of a Modelica model with discontinuities in the PowerDEVS environment; where the Quantized State Systems (QSS) integration methods are implemented. Providing DEVS-based simulation algorithms to Modelica users should extend significantly the tools that are currently available in order to efficiently simulate several classes of largescale real-world problems; e.g. systems with heavy discontinuities. In this work both the theoretical design and the implementation of the interface are discussed. Furthermore; simulation results are provided that demonstrate the correctness of the proposed implementation as well as the superior performance of QSS methods when simulating discontinuous systems.

Keywords: OpenModelica; DASSL; PowerDEVS; QSS; discontinuous systems

Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany

Author:
François E. Cellier, Xenofon Floros, Federico Bergero, Ernesto Kofman
Title:
Automated Simulation of Modelica Models with QSS Methods : The Discontinuous Case
DOI:
http://dx.doi.org/10.3384/ecp11063657
References:

[1] Tamara Beltrame and François E. Cellier. Quantised State System Simulation in Dymola/Modelica using the DEVS Formalism. In Modelica; 2006.

[2] Federico Bergero and Ernesto Kofman. Powerdevs: a tool for hybrid system modeling and real-time simulation. SIMULATION; 2010.

[3] François Cellier; Ernesto Kofman; Gustavo Migoni; and Mario Bortolotto. Quantized State System Simulation. In Proceedings of Summer-Sim 08 (2008 Summer Simulation Multiconference); Edinburgh; Scotland; 2008.

[4] François E. Cellier and Ernesto Kofman. Continuous System Simulation. Springer-Verlag; New York; 2006.

[5] Xenofon Floros; François E. Cellier; and Ernesto Kofman. Discretizing Time or States? A Comparative Study between DASSL and QSS. In 3rd International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools; EOOLT; Oslo; Norway; October 3; 2010; pages 107–115; 2010.

[6] Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1. Wiley-Interscience; New York; 2004. doi: 10.1109/9780470545669.

[7] Peter Fritzson; Peter Aronsson; Hakan Lundvall; Kaj Nystrom; Adrian Pop; Levon Saldamli; and David Broman. The OpenModelica Modeling; Simulation; and Development Environment. Proceedings of the 46th Conference on Simulation and Modeling (SIMS’05); pages 83–90; 2005.

[8] Peter Fritzson and Peter Bunus. Modelica - A General Object-Oriented Language for Continuous and Discrete-Event System Modeling and Simulation. In Annual Simulation Symposium; pages 365–380; 2002.

[9] Peter Fritzson and Vadim Engelson. Modelica - a unified object-oriented language for system modeling and simulation. In Eric Jul; editor; ECOOP ’98 - Object-Oriented Programming; volume 1445 of Lecture Notes in Computer Science; pages 67–90. Springer Berlin / Heidelberg; 1998. 10.1007/BFb0054087.

[10] Ernesto Kofman. A Second-Order Approximation for DEVS Simulation of Continuous Systems. Simulation; 78(2):76–89; 2002. doi: 10.1177/0037549702078002206.

[11] Ernesto Kofman. Quantization-Based Simulation of Differential Algebraic Equation Systems. Simulation; 79(7):363–376; 2003. doi: 10.1177/0037549703038881.

[12] Ernesto Kofman. Discrete Event Simulation of Hybrid Systems. SIAM Journal on Scientific Computing; 25:1771–1797; 2004. doi: 10.1137/S1064827502418379.

[13] Ernesto Kofman. A Third Order Discrete Event Simulation Method for Continuous System Simulation. Latin America Applied Research; 36(2):101–108; 2006.

[14] Ernesto Kofman and Sergio Junco. Quantizedstate systems: a DEVS Approach for continuous system simulation. Trans. Soc. Comput. Simul. Int.; 18(3):123–132; 2001.

[15] Gustavo Migoni and Ernesto Kofman. Linearly Implicit Discrete Event Methods for Stiff ODEs. Latin American Applied Research; 2009. In press.

[16] Victor Sanz; Alfonso Urquía; François E. Cellier; and Sebastián Dormido. System Modeling Using the Parallel DEVS Formalism and the Modelica Language. Simulation Modeling Practice and Theory; 18(7):998–1018; 2010. doi: 10.1016/j.simpat.2010.03.004.

[17] Bernard P. Zeigler and J. S. Lee. Theory of Quantized Systems: Formal Basis for DEVS/HLA Distributed Simulation Environment. Enabling Technology for Simulation Science II; 3369(1):49–58; 1998. doi: 10.1117/12.319354.

Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany

Author:
François E. Cellier, Xenofon Floros, Federico Bergero, Ernesto Kofman
Title:
Automated Simulation of Modelica Models with QSS Methods : The Discontinuous Case
DOI:
http://dx.doi.org/10.3384/ecp11063657
Note: the following are taken directly from CrossRef
Citations:
No citations available at the moment


Responsible for this page: Peter Berkesand
Last updated: 2018-8-9