Article | Proceedings of SIGRAD 2010: Content aggregation and visualization; November 25–26; 2010; Västerås; Sweden | Particle-based Rendering for Porous Media

Title:
Particle-based Rendering for Porous Media
Author:
S. Grottel: Visualisation Research Center (VISUS), University of Stuttgart, Germany G. Reina: Visualisation Research Center (VISUS), University of Stuttgart, Germany T. Zauner: Institute for Computational Physics, University of Stuttgart, Germany R. Hilfer: Institute for Computational Physics, University of Stuttgart, Germany T. Ertl: Visualisation Research Center (VISUS), University of Stuttgart, Germany
Download:
Full text (pdf)
Year:
2010
Conference:
Proceedings of SIGRAD 2010: Content aggregation and visualization; November 25–26; 2010; Västerås; Sweden
Issue:
052
Article no.:
008
Pages:
45-51
No. of pages:
7
Publication type:
Abstract and Fulltext
Published:
2010-11-29
ISBN:
978-91-7393-281-3
Series:
Linköping Electronic Conference Proceedings
ISSN (print):
1650-3686
ISSN (online):
1650-3740
Publisher:
Linköping University Electronic Press; Linköpings universitet


Export in BibTex, RIS or text

Particle-based modeling and simulation of granular or porous media is a widely-used tool in physics and material science to study behavior like fracture and failure under external force. Classical models use spherical particles. However; up to 108 polyhedral-shaped particles are required to achieve realistic results comparable to laboratory experiments. As contact points and exposed surfaces play important roles for the analysis; a meaningful visualization aiding the numeric analysis has to represent the exact particle shapes. For particle-based data sets with spherical particles; ray tracing has been established as the state-of-the-art approach yielding high rendering performance; optimal visual quality and good scalability. However; when rendering polyhedral-shaped particles; there is no issue with visual quality comparing polygon-based rendering approaches and ray casting; whereas the polygon-based approaches cause significantly lower fragment load. The paper at hand investigates the advantages and drawbacks of both approaches by analyzing the performance of state-of-the-art rendering methods employing vertex-buffer objects; hardware-supported instancing; geometry shader; and GPU-based ray casting.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Curve; surface; solid; and object representations; I.3.8 [Computer Graphics]: Computational Geometry and Object Modeling—Applications.

Proceedings of SIGRAD 2010: Content aggregation and visualization; November 25–26; 2010; Västerås; Sweden

Author:
S. Grottel, G. Reina, T. Zauner, R. Hilfer, T. Ertl
Title:
Particle-based Rendering for Porous Media
References:

[BH99] BISWAL B.; HILFER R.: Microstructure analysis of reconstructed porous media. Physica A 266 (1999); 307. 2


[BHK09] BISWAL B.; HELD R.; KHANNA V.; WANG J.; HILFER R.: Towards precise prediction of transport properties from synthetic computer tomography of reconstructed porous media. Physical Review E 80 (2009); 041301. 2


[BØH09] BISWAL B.; ØREN P.; HELD R.; BAKKE S.; HILFER R.: Modeling of multiscale porous media. Image Analysis and Stereology 28 (2009); 23–34. 2


[Geo] GLSL geometry shader 4 extension specification. http://developer.download.nvidia.com/opengl/specs/ GL_EXT_geometry_shader4.txt. 4


[GRDE10] GROTTEL S.; REINA G.; DACHSBACHER C.; ERTL T.: Coherent Culling and Shading for Large Molecular Dynamics Visualization. Computer Graphics Forum 29; 3 (2010); 953–962. http://www.visus.uni-stuttgart.de/megamol. 1; 3


[GRE09] GROTTEL S.; REINA G.; ERTL T.: Optimized Data Transfer for Time-dependent; GPU-based Glyphs. In Proceedings of IEEE Pacific Visualization Symposium 2009 (2009); pp. 65–72. 3


[GRVE07] GROTTEL S.; REINA G.; VRABEC J.; ERTL T.: Visual Verification and Analysis of Cluster Detection for Molecular Dynamics. vol. 13; pp. 1624–1631. 1


[Gum03] GUMHOLD S.: Splatting Illuminated Ellipsoids with Depth Correction. In Workshop on Vision; Modelling; and Visualization VMV’03 (2003); pp. 245–252. 1


[Hil96] HILFER R.: Transport and relaxation phenomena in porous media. Adv. Chem. Phys. XCII (1996); 299. 1; 2


[Hil00] HILFER R.: Local porosity theory and stochastic reconstruction for porous media. In Räumliche Statistik und Statistische Physik (2000); Stoyan D.; Mecke K.; (Eds.); Lecture Notes in Physics; Vol. 254; Springer; p. 203. 2


[Hil02] HILFER R.: Review on scale dependent characterization of the microstructure of porous media. Transport in Porous Media 46 (2002); 373. 2


[HZWH09] HARTING J.; ZAUNER T.; WEEBER R.; HILFER R.: Numerical Modeling of Fluid Flow in Porous Media and in Driven Colloidal Suspensions. Springer; 2009; p. 349. 2


[JBPE99] JENSEN R. P.; BOSSCHER P. J.; PLESHA M. E.; EDIL T. B.: DEM simulation of granular media-structure interface: effects of surface roughness and particle shape. International Journal for Numerical and Analytical Methods in Geomechanics 23; 6 (1999); 531–547. 1


[KHK09] KNOLL A.; HIJAZI Y.; KENSLER A.; SCHOTT M.; HANSEN C.; HAGEN H.: Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arithmetic. Computer Graphics Forum 28; 1 (2009); 26–40. 1


[KK86] KAY T. L.; KAJIYA J. T.: Ray tracing complex scenes. In SIGGRAPH ’86: Proceedings of the 13th annual conference on Computer graphics and interactive techniques (New York; NY; USA; 1986); ACM; pp. 269–278. 4


[LBFH10] LATIEF F.; BISWAL B.; FAUZI U.; HILFER R.: Continuum reconstruction of the pore scale microstructure for fontainebleau sandstone. Physica A: Statistical Mechanics and its Applications 389; 8 (2010); 1607 – 1618. 1; 2


[LVRH07] LAMPE O. D.; VIOLA I.; REUTER N.; HAUSER H.: Two-Level Approach to Efficient Visualization of Protein Dynamics. IEEE Transactions on Visualization and Computer Graphics 13; 6 (2007); 1616–1623. 2; 4


[MC95] MARTINELLI G.; CAROTTA M. C.: Thick-film gas sensors. Sensors and Actuators B: Chemical 23; 2-3 (1995); 157 – 161. 2


[MH99] MANWART C.; HILFER R.: Reconstruction of random media using Monte Carlo methods. Physical Review E 59 (1999); 5596. 2


[MTH00] MANWART C.; TORQUATO S.; HILFER R.: Stochastic reconstruction of sandstones. Phys.Rev.E 62 (2000); 893. 2


[NLC02] NA H.-S.; LEE C.-N.; CHEONG O.: Voronoi diagrams on the sphere. Computational Geometry 23; 2 (2002); 183 – 194. 3

Proceedings of SIGRAD 2010: Content aggregation and visualization; November 25–26; 2010; Västerås; Sweden

Author:
S. Grottel, G. Reina, T. Zauner, R. Hilfer, T. Ertl
Title:
Particle-based Rendering for Porous Media
Note: the following are taken directly from CrossRef
Citations:
No citations available at the moment