Article | The Swedish AI Society Workshop May 20-21; 2010; Uppsala University | The INFUSIS Project: Data and Text Mining for In Silico Modeling

Title:
The INFUSIS Project: Data and Text Mining for In Silico Modeling
Author:
Henrik Boström: Informatics Research Centre, University of Skövde, Sweden \ Dept. Of Computer and Systems Sciences, Stockholm University, Sweden Ulf Norinder: AstraZeneca R&D Södertälje, Sweden Ulf Johansson: School of Business and Informatics, University of Borås, Sweden Cecilia Sönströd: School of Business and Informatics, University of Borås, Sweden Tuve Löfström: School of Business and Informatics, University of Borås, Sweden Elzbieta Dura: Lexware Labs, Sweden Ola Engkvist: AstraZeneca R&D Mölndal, Sweden Sorel Muresan: AstraZeneca R&D Mölndal, Sweden Niklas Blomberg: AstraZeneca R&D Mölndal, Sweden
Download:
Full text (pdf)
Year:
2010
Conference:
The Swedish AI Society Workshop May 20-21; 2010; Uppsala University
Issue:
048
Article no.:
011
Pages:
65-70
No. of pages:
6
Publication type:
Abstract and Fulltext
Published:
2010-05-19
Series:
Linköping Electronic Conference Proceedings
ISSN (print):
1650-3686
ISSN (online):
1650-3740
Publisher:
Linköping University Electronic Press; Linköpings universitet


The INFUSIS project is a three-year colla-boration between industry and academia in order to further the development of new effective methods for generating predictive and interpretable models from machine learning and text mining to solve drug discovery problems.

The Swedish AI Society Workshop May 20-21; 2010; Uppsala University

Author:
Henrik Boström, Ulf Norinder, Ulf Johansson, Cecilia Sönströd, Tuve Löfström, Elzbieta Dura, Ola Engkvist, Sorel Muresan, Niklas Blomberg
Title:
The INFUSIS Project: Data and Text Mining for In Silico Modeling
References:

[1] H. van de Waterbeemd and E. Gifford; “Admet in silico modelling: towards prediction paradise?” Nat Rev Drug Discov; vol. 2; no. 3; pp 192–204; 2003.


[2] H. Boström and U. Norinder; “Utilizing Information on Uncertainty for In Silico Modeling using Random Forests”; Proc. of the 3rd Skövde Workshop on Information Fusion Topics; pp 59-62; 2009.


[3] C. Dudas and H. Boström; “Using uncertain chemical and thermal data to predict product quality in a casting process”; Proc. of the First ACM SIGKDD Workshop on Knowledge Discovery from Uncertain Data; pp 57–61; 2009.


[4] U. Johansson; C. Sönströd; T. Löfström and H. Boström; “Chipper – A Novel Algorithm for Concept Description”; Proc. of the Scandinavian Conference on Artificial Intelligence; pp 133-140; 2008.


[5] C. Sönströd; U. Johansson; U. Norinder; and H. Boström; “Comprehensible Models for Predicting Molecular Interaction with Heart-Regulating Genes”; Proc. of the Inter-national Conference on Machine Learning and Applications; pp 559 – 564; 2008.


[6] C. Sönströd; U. Johansson and U. Norinder; “Generating Comprehensible QSAR models”; Proc. of the 3rd Skövde Workshop on Information Fusion Topics; pp 44-48; 2009.


[7] U. Johansson; R. König and L. Niklasson; “Rule Extraction from Trained Neural Networks using Genetic Programming”; Proc. of the International Conference on Artificial Neural Networks; supplementary proceedings; pp 13-16; 2003.


[8] U. Johansson and L. Niklasson; “Evolving Decision Trees Using Oracle Guides”; Proc. of the IEEE Symposium on Computational Intelligence and Data Mining; pp 238-244; 2009.


[9] U. Johansson; R. König; T. Löfström and L. Niklasson; ”Using Imaginary Ensembles to Select GP Classifiers”; EuroGP; 2010; In Press.


[10] L. I. Kuncheva and C. J. Whitaker; “Measures of Diversity in Classifier Ensem-bles and Their Relationship with the Ensemble Accuracy”; Machine Learning; (51):181-207; 2003.


[11] U. Johansson; T. Löfström and L. Niklasson; “The Importance of Diversity in Neural Network Ensembles - An Empirical Investigation”; Proc. of the International Joint Conference on Neural Networks; pp 661-666; 2007.


[12] U. Johansson; T. Löfström and U. Norinder; “Evaluating Ensembles on QSAR Classification”; Proc. of Skövde Workshop on Information Fusion Topics; pp 59-62; 2009.


[13] Z.-H. Zhou; J.-X. Wu and W. Tang. “Ensembling Neural Networks: Many Could Be Better Than All”; Artificial Intelligence; Vol. 137; No. 1-2:239-263; 2002.


[14] M. M. Islam; X. Yao; S. M. Shahriar Nirjon; M. A. Islam and K. Murase; “Bagging and boosting negatively correlated neural networks”. IEEE transactions on systems; man; and cybernetics; Part B: Cybernetics; 38(3):771-84; 2008.


[15] Y. Tsuruoka; J. McNaught; S. Ananiadou; “Normalizing biomedical terms by minimizing ambiguity and variability“; BMC Bioinformatics; Vol. 9; No. Suppl 3; 2008.


[16] E. Dura; O. Engkvist and S. Muresan; “Names of chemical compounds within drug discovery context“; Proc. of the 3rd Skövde Workshop on Information Fusion Topics; pp 55-58; 2009.


[17] K. M. Hettne; R. H. Stierum; M. J. Schuemie; P. J. M. Hendriksen; B. J. A. Schijvenaars; E. M. van Mulligen; J. Kleinjans; and J. A. Kors; “A dictionary to identify small molecules and drugs in free text“; Bioinformatics; September 16; 2009.

The Swedish AI Society Workshop May 20-21; 2010; Uppsala University

Author:
Henrik Boström, Ulf Norinder, Ulf Johansson, Cecilia Sönströd, Tuve Löfström, Elzbieta Dura, Ola Engkvist, Sorel Muresan, Niklas Blomberg
Title:
The INFUSIS Project: Data and Text Mining for In Silico Modeling
Note: the following are taken directly from CrossRef
Citations:
No citations available at the moment