Article | Proceedings of the 7th International Modelica Conference; Como; Italy; 20-22 September 2009 | FluidDissipation for Applications - A Library for Modelling of Heat Transfer and Pressure Loss in Energy Systems

Title:
FluidDissipation for Applications - A Library for Modelling of Heat Transfer and Pressure Loss in Energy Systems
Author:
Thorban Vahlenkamp: XRG Simulation GmbH, Germany Stefan Wischhusen: XRG Simulation GmbH, Germany
DOI:
10.3384/ecp09430012
Download:
Full text (pdf)
Year:
2009
Conference:
Proceedings of the 7th International Modelica Conference; Como; Italy; 20-22 September 2009
Issue:
043
Article no.:
014
Pages:
132-141
No. of pages:
10
Publication type:
Abstract and Fulltext
Published:
2009-12-29
ISBN:
978-91-7393-513-5
Series:
Linköping Electronic Conference Proceedings
ISSN (print):
1650-3686
ISSN (online):
1650-3740
Publisher:
Linköping University Electronic Press; Linköpings universitet


Export in BibTex, RIS or text

The results of a free and open source MODELICA library for convective heat transfer and pressure loss calculations of energy devices called FLUIDDISSIPATION will be presented based on the goals shown at the MODELICA Conference 2008. The FLUIDDISSIPATION library is developed within the European research project EuroSysLib.

The library delivers a broad range of verified and validated correlations describing convective heat transfer and pressure loss of fluids in energy devices. These correlations are numerically optimised to provide efficient and stable transient simulations. The library also provides convective heat transfer models and flow models of most heat transfer and pressure loss correlations using the also free and open source MODELICA_FLUID library as thermo-hydraulic framework for system simulation.

Scope; implementation concept; numerical challenges; verification and validation of the FLUIDDISSIPATION library will be exemplarily described (e.g. for convective heat transfer and pressure loss of twophase flow).

Industrial applications for thermo-hydraulic system simulation (e.g. air distribution circuit for supplemental cooling; aircraft engine fuel feeding system) are presented using FLUIDDISSIPATION correlations implemented within MODELICA_FLUID models. A detailed documentation is available in the library itself.

Keywords: Convective heat transfer; pressure loss; dissipation; MODELICA_FLUID

Proceedings of the 7th International Modelica Conference; Como; Italy; 20-22 September 2009

Author:
Thorban Vahlenkamp, Stefan Wischhusen
Title:
FluidDissipation for Applications - A Library for Modelling of Heat Transfer and Pressure Loss in Energy Systems
DOI:
http://dx.doi.org/10.3384/ecp09430012
References:

[1] T. Vahlenkamp and S. Wischhusen. Fluiddissipation - a centralised library for modelling of heat transfer and pressure loss. In B. Bachmann; editor; Proceedings of the 6th International Modelica Conference; volume 1; pages 173–178; Bielefeld; Germany; March 2008.


[2] Casella; Francesco et al. The Modelica Fluid and Media library for modeling of incompressible and compressible thermo-fluid pipe networks. In Proceedings of the 5th International Modelica Conference; pages 631–640; Linköping; Sweden; 2006. The Modelica Association.


[3] S. Wischhusen. Dynamische Simulation zur wirtschaftlichen Bewertung von komplexen Energiesystemen. PhD thesis; Technische Universität Hamburg-Harburg; 2005.


[4] A Bejan and A.D. Kraus. Heat Transfer handbook. John Wiley & Sons; 2nd edition; 2003.


[5] VDI. VDI - Wärmeatlas: Berechnungsblätter für den Wärmeübergang . Springer Verlag; 9th edition; 2002.


[6] I. E. Idelchik. Handbook of hydraulic resistance. Jaico Publishing House; Mumbai; 3rd edition; 2006.


[7] M.M. Shah. A general correlation for heat transfer during film condensation inside pipes. Int. J. Heat Mass Transfer; 22:547–556; 1979. doi: 10.1016/0017-9310(79)90058-9.


[8] M.K. Dobson and J.C. Chato. Condensation in smooth horizontal tubes. Journal of Heat Transfer; 120:193–213; 1998. doi: 10.1115/1.2830043.


[9] K.E. Gungor and R.H.S. Winterton. A general correlation for flow boiling in tubes and annuli. Int. J. Heat Mass Transfer; 29:351–358; 1986. doi: 10.1016/0017-9310(86)90205-X.


[10] N. Kattan and J.R. Thome. Flow boiling in horizontal pipes: Part 2 - new heat transfer data for five refrigerants. Journal of Heat Transfer; 120:148–155; 1998. doi: 10.1115/1.2830038


[11] L. Friedel. Improved friction pressure drop correlations for horizontal and vertical two phase pipe flow. 3R International ; 18:485–491; 1979.


[12] R. Pettersen; J.; Rieberer and S.T. Munkejord. Heat transfer and pressure drop characteristics of evaporating carbon dioxide in microchannel tubes. Technical report; SINTEF Energy Research; 2000.


[13] D.S. Miller. Internal flow systems ; volume 5th of BHRA Fluid Engineering Series. BHRA Fluid Engineering; 1984.

Proceedings of the 7th International Modelica Conference; Como; Italy; 20-22 September 2009

Author:
Thorban Vahlenkamp, Stefan Wischhusen
Title:
FluidDissipation for Applications - A Library for Modelling of Heat Transfer and Pressure Loss in Energy Systems
DOI:
http://dx.doi.org/10.3384/ecp09430012
Note: the following are taken directly from CrossRef
Citations:
No citations available at the moment