Article | SIGRAD 2008. The Annual SIGRAD Conference Special Theme: Interaction; November 27-28; 2008 Stockholm; Sweden | Real Time Large Scale Fluids for Games

Title:
Real Time Large Scale Fluids for Games
Author:
Daniel Kallin: Sweden
Download:
Full text (pdf)
Year:
2008
Conference:
SIGRAD 2008. The Annual SIGRAD Conference Special Theme: Interaction; November 27-28; 2008 Stockholm; Sweden
Issue:
034
Article no.:
010
Pages:
31-38
No. of pages:
8
Publication type:
Abstract and Fulltext
Published:
2008-11-27
Series:
Linköping Electronic Conference Proceedings
ISSN (print):
1650-3686
ISSN (online):
1650-3740
Publisher:
Linköping University Electronic Press; Linköpings universitet


This paper presents an implementation of a stable height-field fluid solver on non-uniform quadtree grids. Smoothing kernel interpolation allow one to use semi-Lagrangian advection on the nonuniform grid. A modification to the advection make it mass conserving. The non-uniform grid allow the model to run on a very tight cell budget with high frame rates even for arbitrary sized environments. Gravity acceleration is implemented as a modified explicit Euler step with upwind differencing. The differencing is based on a definition of a node neighbour which doesnt require the neighbor to be a quadtree leaf. This solves the problems of hanging nodes inherent with quadtrees. This model is suitable for water propagating over height field terrains in interactive environments like video games.

Keywords: Fluid dynamics; semi-Lagrangian advection; upwind differencing; adaptive grid; quadtree

SIGRAD 2008. The Annual SIGRAD Conference Special Theme: Interaction; November 27-28; 2008 Stockholm; Sweden

Author:
Daniel Kallin
Title:
Real Time Large Scale Fluids for Games
References:

ASPLUND; P. 2007. Dynamic Spreading of Wildfire. Master’s thesis; Kungliga Tekniska Hgskolan.


AXELSSON; T. 2007. Realtidssimulering av vtskor i datorspel mha partikelsystem. Master’s thesis; Hgskolan Skvde.


BEAUDOIN; P.; PAQUET; S.; AND POULIN; P. 2001. Realistic and controllable fire simulation. In Graphics Interface 2001; 159– 166.


BRIDSON; R.; AND MLLER-FISCHER; M.; 2006. Fluid simulation course notes; siggraph.


BRIDSON; R.; AND MLLER-FISCHER; M. 2007. Combating dissipation. SIGGRAPH.


BRIDSON; R.; AND MLLER-FISCHER; M. 2007. Fluid simulation. SIGGRAPH.


BRIDSON; R.; AND MLLER-FISCHER; M. 2007. More accurate pressure solves. SIGGRAPH.


BRIDSON; R.; FEDKIW; R.; AND MLLER-FISCHER; M. Fluid simulation course notes; siggraph 2007.


CORDS; H. 2007. Mode-splitting for highly detailed; interactive liquid simulation. In GRAPHITE ’07: Proceedings of the 5th international conference on Computer graphics and interactive techniques in Australia and Southeast Asia; ACM; New York; NY; USA; 265–272.


DUCHAINEAU; M. A.; WOLINSKY; M.; SIGETI; D. E.; MILLER; M. C.; ALDRICH; C.; AND MINEEV-WEINSTEIN; M. B. 1997. ROAMing terrain: real-time optimally adapting meshes. In IEEE Visualization; 81–88.


DUNN; A.; AND MILNE; G. 2004. Modelling wildfire dynamics via interacting automata. In Cellular Automata; Springer Berlin; vol. 3305; 395–404.


ELCOTT; S. 2005. Discrete; Circulation-Preserving; and Stable Simplicial Fluids. Master’s thesis; California Institute of Technology.


FITZPATRICK; R. Upwind differencing. [Online; accessed 9-June- 2008].


FOSTER; N.; AND METAXAS; D. 1996. Realistic animation of liquids. Graphical models and image processing: GMIP 58; 5; 471–483.


GREEN; S.; 2008. Particle-based fluid simulation; nvidia.


HEGEMAN; K.; CARR; N. A.; AND MILLER; G. S. 2006. Particlebased fluid simulation on the gpu. In Computational Science –


ICCS 2006; Springer; V. N. Alexandrov; G. D. van Albada; P. M. Sloot; and J. Dongarra; Eds.; vol. 3994 of LNCS; 228–235.


HINSINGER; D.; NEYRET; F.; AND CANI; M.-P. 2002. Interactive animation of ocean waves. In ACM-SIGGRAPH/EG Symposium on Computer Animation (SCA).


HOFFMAN; J.; AND JOHNSON; C. 2006. Computational Turbulent Incompressible Flow. Springer.


HUGOSON; P.; AND NILSSON; A. 2007. Hybrid Fluid Simulation. Master’s thesis; Hgskolan Kalmar.


IRVING; G.; GUENDELMAN; E.; LOSASSO; F.; AND FEDKIW; R. 2006. Efficient simulation of large bodies of water by coupling two and three dimensional techniques. In SIGGRAPH ’06: ACM


SIGGRAPH 2006 Papers; ACM; New York; NY; USA; 805–811. KARAFYLLIDIS; I.; AND THANAILAKIS; A. 1997. A model for predicting forest fire spreading using cellular automata. Ecological Modelling 99; 1; 87–97.


KASS; M.; AND MILLER; G. 1990. Rapid; stable fluid dynamics for computer graphics. In SIGGRAPH ’90: Proceedings of the 17th annual conference on Computer graphics and interactive techniques; ACM; New York; NY; USA; 49–57.


KPPEN; T.; AND NIVFORS; A. 2005. Realtidsrendering av stora vattenytor. Master’s thesis; Hgskolan Kalmar.


LAYTON; A. T.; AND VAN DE PANNE; M. 2002. A numerically efficient and stable algorithm for animating water waves. In The Visual Computer; Springer-Verlag; 41–53.


LEE; H.; KIM; L.; MEYER; M.; AND DESBRUN; M. 2001. Meshes on fire. In Proceedings of the Eurographic workshop on Computer animation and simulation; Springer-Verlag New York; Inc.; New York; NY; USA; 75–84.


LIU; P.-S.; AND CHOU; Y.-H. 1997. A grid automation of wildfire growth simulation.


LOMAX; H.; THOMAS H. PULLIAM; AND ZINGG; D. W. 2001. Fundamentals of Computational Fluid Dynamics. Springer- Verlag.


LUEBKE; D.; REDDY; M.; COHEN; J. D.; VARSHNEY; A.; WATSON; B.; AND HUEBNER; R. 2003. Level of Detail for 3D Graphics. Morgan Kaufmann.


MAES; M. M.; FUJIMOTO; T.; AND CHIBA; N. 2006. Efficient animation of water flow on irregular terrains. In GRAPHITE ’06: Proceedings of the 4th international conference on Computer graphics and interactive techniques in Australasia and Southeast Asia; ACM; New York; NY; USA; 107–115.


MITTRING; M. 2007. Finding next gen: Cryengine 2. In SIGGRAPH ’07: ACM SIGGRAPH 2007 courses; ACM; New York; NY; USA; 97–121.


MLLER-FISCHER; M. 2007. Real time fluids in games.


SIGGRAPH. M¨ULLER; M.; SCHIRM; S.; AND DUTHALER; S. 2007. Screen space meshes. In SCA ’07: Proceedings of the 2007 ACM SIGGRAPH/ Eurographics symposium on Computer animation; Eurographics Association; Aire-la-Ville; Switzerland; Switzerland; 9–15.


NOE; K. O.; 2004. Implementing rapid; stable fluid dynamics on the gpu.


O’BRIEN; J. F.; AND HODGINS; J. K. 1995. Dynamic simulation of splashing fluids. In Computer Animation ’95; 198–205.


ROGERS; S. E.; AND KWAK; D. 1991. An upwind differencing scheme for the incompressible navier-stokes equations. Appl. Numer. Math. 8; 1; 43–64.


STAM; J. 1999. Stable fluids. In Siggraph 1999; Computer Graphics Proceedings; Addison Wesley Longman; Los Angeles; A. Rockwood; 121–128.


STAM; J. 2001. A simple fluid solver based on the fft. J. Graph. Tools 6; 2; 43–52.


STAM; J.; 2003. Real-time fluid dynamics for games.


TESSENDORF; J. 1999. Simulating ocean water. In SIGGRAPH Course Notes; SIGGRAPH.


THUREY; N.; M¨ULLER-FISCHER; M.; SCHIRM; S.; AND GROSS; M. 2007. Real-time breakingwaves for shallow water simulations. In PG ’07: Proceedings of the 15th Pacific Conference on Computer Graphics and Applications; IEEE Computer Society; Washington; DC; USA; 39–46.


WEISSTEIN; E. W. Distribution function. accessed 12-March- 2008.


WEISSTEIN; E. W. Probability function. accessed 12-March-2008.


WIKLUND; O. 2007. A Computational Study of a Finite Element Method for Two Phase Flow. Master’s thesis; Kungliga Tekniska Hgskolan.


WONG; A. C. 2003. The Moving Contact Line in a Shallow Water Simulation. Master’s thesis; University of British Columbia.


W.W.; H.; R.H.; G.; M.G.; T.; W.H.; R.; AND D.G.; D. 2000. Simulating fire patterns in heterogeneous landscapes. Ecological Modelling 135; 2-3; 243–263.

SIGRAD 2008. The Annual SIGRAD Conference Special Theme: Interaction; November 27-28; 2008 Stockholm; Sweden

Author:
Daniel Kallin
Title:
Real Time Large Scale Fluids for Games
Note: the following are taken directly from CrossRef
Citations:
No citations available at the moment