*Jiri Skala*: University of West Bohemia, Czech Republic

*Ivana Kolingerova*: University of West Bohemia, Czech Republic

**Keywords:**Data stream; clustering; facility location; geometric data

## SIGRAD 2007. The Annual SIGRAD Conference; Special Theme: Computer Graphics in Healthcare; November 28-29; 2007; Uppsala; Sweden

CHARIKAR; M.; AND GUHA; S. 1999. Improved combinatorialalgorithms for the facility location and k-median problems. In IEEE Symposium on Foundations of Computer Science; 378â€“ 388.

CHARIKAR; M.; KHULLER; S.; MOUNT; D. M.; AND NARASIMHAN; G. 2001. Algorithms for facility location problems with outliers. In Symposium on Discrete Algorithms; 642â€“ 651.

CHARIKAR; M.; GUHA; S.; Â´EVA TARDOS; AND SHMOYS; D. B. 2002. A constant-factor approximation algorithm for the kmedian problem. Journal of Computer System Sciences 65; 1; 129â€“149.

CHARIKAR; M.; Oâ€™CALLAGHAN; L.; AND PANIGRAHY; R. 2003. Better streaming algorithms for clustering problems. In Proc. of 35th ACM Symposium on Theory of Computing (STOC); 30â€“39.

CHUDAK; F. A.; AND SHMOYS; D. B. 2004. Improved approximation algorithms for the uncapacitated facility location problem. SIAM Journal on Comp. 33; 1; 1â€“25.

FRAHLING; G.; AND SOHLER; C. 2005. Coresets in dynamic geometric data streams. In Proceedings of the 37th annual ACM symposium on Theory of computing (STOC); 209â€“217.

GUHA; S.; AND KHULLER; S. 1998. Greedy strikes back: Improved facility location algorithms. In ACM-SIAM Symposium on Discrete Algorithms (SODA); 649â€“657.

GUHA; S.; RASTOGI; R.; AND SHIM; K. 1998. CURE: An efficient clustering algorithm for large databases. In Proceedings of ACM SIGMOD International Conference on Management of Data; 73â€“84.

GUHA; S.; MISHRA; N.; MOTWANI; R.; AND Oâ€™CALLAGHAN; L. 2000. Clustering data streams. In IEEE Symposium on Foundations of Computer Science; 359â€“366.

GUHA; S.; MEYERSON; A.; MISHRA; N.; MOTWANI; R.; AND Oâ€™CALLAGHAN; L. 2003. Clustering data streams: Theory and practice. IEEE Transactions on Knowledge and Data Engineering 15; 3; 515â€“528.

ISENBURG; M.; AND GUMHOLD; S. 2003. Out-of-core compressionfor gigantic polygon meshes. In SIGGRAPHâ€™03 Conference Proceedings; 935â€“942.

ISENBURG; M.; AND LINDSTROM; P. 2005. Streaming meshes. In Proceedings of Visualizationâ€™05; 231â€“238.

ISENBURG; M.; LINDSTROM; P.; AND SNOEYINK; J. 2005. Streaming compression of triangle meshes. In Proceedings of the 3rd Eurographics symposium on Geometry processing (SGP); 111.

ISENBURG; M.; LINDSTROM; P.; GUMHOLD; S.; AND SHEWCHUK; J. 2006. Streaming compression of tetrahedral volume meshes. In Graphics Interface; 115â€“121.

ISENBURG; M.; LIU; Y.; SHEWCHUK; J.; AND SNOEYINK; J. 2006. Streaming computation of delaunay triangulations. ACM Trans. Graph. 25; 3; 1049â€“1056.

JAIN; K.; AND VAZIRANI; V. V. 1999. Primal-dual approximation algorithms for metric facility location and k-median problems. In IEEE Symposium on Foundations of Computer Science; 2â€“13.

JAIN; A. K.; MURTY; M. N.; AND FLYNN; P. J. 1999. Data clustering: A review. ACM Computing Surveys 31; 3; 264â€“323. KAUFMAN; L.; AND ROUSSEEUW; P. J. 1990. Finding groups in data: An introduction to cluster analysis. John Wiley; New York.

KORUPOLU; M. R.; PLAXTON; C. G.; AND RAJARAMAN; R. 1998. Analysis of a local search heuristic for facility location problems. In 9th ACM-SIAM Symposium on Discrete Algorithms (SODA); 1â€“10.

LINDSTROM; P. 2000. Out-of-core simplification of large polygonal models. In Siggraph 20000; Computer Graphics Proceedings; 259â€“262.

MAHDIAN; M.; MARKAKIS; E.; SABERI; A.; AND VAZIRANI; V. V. 2001. A greedy facility location algorithm analyzed using dual fitting. In 4th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX); 127â€“137.

MEYERSON; A. 2001. Online facility location. In Proceedings of the 42nd IEEE symposium on Foundations of Computer Science (FOCS); 426.

MUTHUKRISHNAN; S. 2003. Data streams: Algorithms and applications. In Proceedings of the 14th annual ACM-SIAM symposium on discrete algorithms.

NG; R. T.; AND HAN; J. 1994. Efficient and effective clustering methods for spatial data mining. In 20th Intl. Conference on Very Large Data Bases; 144â€“155.

Oâ€™CALLAGHAN; L.; MISHRA; N.; MEYERSON; A.; GUHA; S.; AND MOTWANI; R. 2002. Streaming-data algorithms forhighquality clustering. In 18th International Conference on Data Engineering (ICDE); 685.

PAJAROLA; R. 2005. Stream-processing points. In Proceedings IEEE Visualization; 239â€“246.

ROSSIGNAC; J. R.; AND BORREL; P. 1993. Multi-resolution 3D approximations for rendering complex scenes. In Geometric Modeling in Comp. Graphics; 455â€“465.

SHARIFZADEH; M.; AND SHAHABI; C. 2004. Approximate voronoi cell computation on geometric data streams. Tech. Rep. 04-835; University of Southern California; Computer Science Department.

SHMOYS; D. B. 2000. Approximation algorithms for facility location problems. In Proceedings of International Workshop on Approximation Algorithms for Combinatorial Optimization (APPROX); 27â€“33.

STANFORD; 2007. Stanford 3D scanning repository. http://graphics.stanford.edu/data/3Dscanrep/.

ZHANG; T.; RAMAKRISHNAN; R.; AND LIVNY; M. 1996. BIRCH: An efficient data clustering method for very large databases. In ACM SIGMOD International Conference on Management of Data; 103â€“114.