Article | GigaHertz 2003. Proceedings from the Seventh Symposium | Characterization of SiC HF-Power MESFETs up to 250°C

Title:
Characterization of SiC HF-Power MESFETs up to 250°C
Author:
W. Liu: Royal Institute of Technology, Sweden C. M. Zetterling: Royal Institute of Technology, Sweden M. Östling: Royal Institute of Technology, Sweden J. Eriksson: Chalmers University of Technology, Sweden N. Rorsman: Chalmers University of Technology, Sweden H. Zira: Chalmers University of Technology, Sweden
Download:
Full text (pdf)
Year:
2003
Conference:
GigaHertz 2003. Proceedings from the Seventh Symposium
Issue:
008
Article no.:
037
No. of pages:
4
Publication type:
Poster
Published:
2003-11-06
Series:
Linköping Electronic Conference Proceedings
ISSN (print):
1650-3686
ISSN (online):
1650-3740
Publisher:
Linköping University Electronic Press; Linköpings universitet


Export in BibTex, RIS or text

4H-SiC metal-semiconductor field effect transistors (MESFETs) [1] were characterized at 25; 100; 150; 200; and 250°C and two-dimensional electro-thermal simulations [2] were performed to examine the effects of elevated device operating temperature and self-heating on DC and RF performance of the MESFETs. The gate and drain characteristics (Id-Vg & Id-Vd) were measured at room and elevated temperatures. The pinch-off voltage increased with temperature and drain voltage. The shift of the pinch-off voltage was more prominent at low temperatures (2 V from 25 to 100 °C) than at high temperatures (negligible shift above 150 V). No short channel effects could be seen in drain characteristics due to the self-heating effects. The measured knee voltage and saturation current differed to some extent from the simulated values; which could be caused by the surface and the substrate traps that were not included in the simulations due to the difficulty to describe the temperature dependence of the trap behaviours. The current gain and power gain were measured as a function of frequency. Decrease of fT and fmax with increase of temperature was observed for both measurements and simulations. Higher fT and fmax were obtained from simulations than from the measurements. Traps and parasitics are believed to be the cause for the differences. A strong influence of contact resistance was seen on fT and fmax in the HF simulations.

GigaHertz 2003. Proceedings from the Seventh Symposium

Author:
W. Liu, C. M. Zetterling, M. Östling, J. Eriksson, N. Rorsman, H. Zira
Title:
Characterization of SiC HF-Power MESFETs up to 250°C
References:

1. N. Rorsman; J. Eriksson; and H; Zirath: Materials Science Forum; Vol. 338-342 (2000); p. 1259-1262.


2. ISE; http://www.ise.com.


3. R.J. Trew: IEEE Microwave Magazine; Vol. 1 (2000); p. 46 –54.


4. C.-M. Zetterling: ISBN 0-85296-998-8; EMIS Proceeding Series; Process Technology for Silicon Carbide Devices; INSPEC; IEE; London; 2002.


5. CREE; http://www.cree.com


6. S. Sriram; G. Augustine; A. A. Burk; Jr.; R. C. Class; H. M. Hobgood; P. A. Orphanos; and L. B. Rowland: IEEE Electron Device letters; Vol. 17 (1996); p. 369-371.


7. S. T. Allen; W. L. Pribble; R. A. Sadler; T. S. Alcorn; Z. Ring; and J. W. Palmour: IEEE MTT-S Digest; MO4B (1999); p. 321-324.


8. K. P. Hilton; M. J. Uren; D. G. Hayes; P. J. Wilding; H. K. Johnson; J. J. Guest; B. H. Smith: Symposium on High Performance Electron Devices for Microwave and Optoelectronic Applications; EDMO (1999); p. 71 –74.


9. F. Schwierz; M. Roschke; J. J. Liou and G. Paasch: Materials Science Forum; Vols. 264-268 (1998); p. 973-976.

GigaHertz 2003. Proceedings from the Seventh Symposium

Author:
W. Liu, C. M. Zetterling, M. Östling, J. Eriksson, N. Rorsman, H. Zira
Title:
Characterization of SiC HF-Power MESFETs up to 250°C
Note: the following are taken directly from CrossRef
Citations:
No citations available at the moment