Article | Proceedings of 15:th Scandinavian International Conference on Fluid Power, June 7-9, 2017, Linköping, Sweden | Cloud-Based System Architecture for Driver Assistance in Mobile Machinery Linköping University Electronic Press Conference Proceedings
Göm menyn

Title:
Cloud-Based System Architecture for Driver Assistance in Mobile Machinery
Author:
O. Koch: Technische Universität Dresden, Dresden, Germany B. Beck: Technische Universität Dresden, Dresden, Germany G. Heß: Technische Universität Dresden, Dresden, Germany C. Richter: Technische Universität Dresden, Dresden, Germany V. Waurich: Technische Universität Dresden, Dresden, Germany J. Weber: Technische Universität Dresden, Dresden, Germany C. Werner: Technische Universität Dresden, Dresden, Germany U. Aßmann: Technische Universität Dresden, Dresden, Germany
DOI:
10.3384/ecp1714481
Download:
Full text (pdf)
Year:
2017
Conference:
Proceedings of 15:th Scandinavian International Conference on Fluid Power, June 7-9, 2017, Linköping, Sweden
Issue:
144
Article no.:
008
Pages:
81-90
No. of pages:
10
Publication type:
Abstract and Fulltext
Published:
2017-12-20
ISBN:
978-91-7685-369-6
Series:
Linköping Electronic Conference Proceedings
ISSN (print):
1650-3686
ISSN (online):
1650-3740
Publisher:
Linköping University Electronic Press, Linköpings universitet


Export in BibTex, RIS or text

Using the example of a wheel loader, this paper presents a cloud-based system architecture enabling intelligent machine behavior. In order to achieve the final goal of a fully automated bucket filling routine, while controlling the loaders engine, travel drive and attachment, different levels of automation are processed gradually. As a first step towards automation, driver assistance can be considered. The paper explains the design choices for a cyber-physicalsystem architecture in the context of construction machinery. This comprises the communication framework and the cloud-application for self-adapting systems (i.e. the MAPE-K loop). As a validation of the architecture and as a demonstrator, a driver assistance functionality has been implemented. Calculations from the cloud-application give the operator feedback about efficiency, loads and task status. A developed visualization app on a tablet serves as user-interface. Concurrent simulation allow an optimization of control algorithms for the machine control and the trajectory planning. Besides changing the parametrization of the underlying models, a solution to change ECU-code at run-time without interrupting the operation is presented. The developed system architecture is the basis for further implementations of adaptive algorithms that improve future machine operation.



Keywords: Cloud computing, smart metering, IIoT, construction machinery, systems architecture

Proceedings of 15:th Scandinavian International Conference on Fluid Power, June 7-9, 2017, Linköping, Sweden

Author:
O. Koch, B. Beck, G. Heß, C. Richter, V. Waurich, J. Weber, C. Werner, U. Aßmann
Title:
Cloud-Based System Architecture for Driver Assistance in Mobile Machinery
DOI:
http://dx.doi.org/10.3384/ecp1714481
References:

[1] R. Parasuraman, T. B. Sheridan, and C. D. Wickens. A model for types and levels of human interaction with automation. Trans. Sys. Man Cyber. Part A, 30(3):286–297, May 2000.

[2] Sae j3016 - taxonomy and definitions for terms related to on-road motor vehicle automated driving systems.

[3] Martin Laube and Steffen Haack. Condition monitoring for hydraulic power units–user-oriented entry in industry 4.0. In 10th International Fluid Power Conference (10. IFK) March 8 - 10, 2016 in Dresden, volume 2, pages 393–402. Dresdner Verein zur Förderung der Fluidtechnik e.V.

[4] Reno Filla. Evaluating the efficiency of wheel loader bucket designs and bucket filling strategies with noncoupled dem simulations and simple performance indicators. pages 274–292, Dresden.

[5] Reno Filla. A study to compare trajectory generation algorithms for automatic bucket filling in wheel loaders. [6] S. Dadhich, U. Bodin, and U. Andersson. Key challenges in automation of earth-moving machines. 68:212–222, 2016.

[7] Elisabet Altin and Brian O’Sullivan. Volvo construction equipment reveals prototype autonomous machines, 2016.

[8] Jonatan Björkman. Control of an autonomous wheel loader.

[9] Anders Bergdahl. Autonomous bucket emptying on hauler, 2011.

[10] H. Derhamy, J. Eliasson, J. Delsing, and P. Priller. A survey of commercial frameworks for the internet of things. In 2015 IEEE 20th Conference on Emerging Technologies Factory Automation (ETFA), pages 1–8, Sept 2015.

[11] Autonomic Computing et al. An architectural blueprint for autonomic computing. IBM White Paper, 31, 2006.

[12] Angel Diaz and Chris Ferris. Ibm’s open cloud architecture. IBM Corp., Armonk, New York, 2013.

[13] OASIS Standard. Mqtt version 3.1.1, 2014.

[14] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Holger Kienle, Marin Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw. Engineering Self-Adaptive Systems through Feedback Loops, pages 48–70. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[15] Vasileios Karagiannis, Periklis Chatzimisios, Francisco Vazquez-Gallego, and Jesus Alonso-Zarate. A survey on application layer protocols for the internet of things. Transaction on IoT and Cloud Computing, 3(1):11–17, 2015.

[16] Roger Light. Eclipse mosquitto, 2010. An Open Source MQTT v3.1/v3.1.1 Broker.

[17] Fredrik Gustafsson. Slip-based tire-road friction estimation. 33(6):1087–1099, 1997.

[18] Heinrich Schneider and Peter Reitz. GPS zur geschwindigkeitsmessung. 51(5):264–265, 1996.

[19] LUXACT - optical sensor for non-contact displacement and speed measurement, 2013.

[20] Correvit s-motion - berührungslose optische sensoren, 2016.

[21] Chris C. Ward and Karl Iagnemma. A dynamic-modelbased wheel slip detector for mobile robots on outdoor terrain. 24(4):821–831, 2008.

[22] ModelicaR - a unified object-oriented language for systems modeling language specification version 3.3, 2012.

[23] Torsten Blochwitz, Martin Otter, Johan Akesson, Martin Arnold, Christoph Clauss, Hilding Elmqvist, Markus Friedrich, Andreas Junghanns, Jakob Mauss, Dietmar Neumerkel, et al. Functional mockup interface 2.0: The standard for tool independent exchange of simulation models. In Proceedings of the 9th International MODELICA Conference; September 3-5; 2012; Munich; Germany, number 076, pages 173–184. Linköping University Electronic Press, 2012.

[24] Peter A Cundall. A computer model for simulating progressive large scale movements in blocky rock systems. In Proceedings Symposium Int. Soc. Rock Mech (ISRM), volume 1, pages 8–11, Nancy Metz, 1971.

[25] Christoph Kloss and Christoph Goniva. Liggghts–open source discrete element simulations of granular materials based on lammps. Supplemental Proceedings: Materials Fabrication, Properties, Characterization, and Modeling, Volume 2, pages 781–788, 2011.

[26] Christian Richter. A new approach for integrating discrete element method into component-oriented system simulations. In ASIM 2016 - 23. Symposium Simulationstechnik 07.-09.09.2016. Zusammenfassung der Beiträge, pages 91–97, HTW Dresden, 2016.

[27] Günther Kunze, Andre Katterfeld, Christian Richter, Hendrik Otto, and Christian Schubert. Plattform- und softwareunabhängige simulation der erdstoff-maschine interaktion. In 5. Fachtagung Baumaschinentechnik, Dresden, 2012.

[28] Tobias Bellmann. Interactive simulations and advanced visualization with modelica. In Proceedings of the 7th International Modelica Conference; Como; Italy; 20-22 September 2009, number 043, pages 541–550. Linköping University Electronic Press, 2009.

Proceedings of 15:th Scandinavian International Conference on Fluid Power, June 7-9, 2017, Linköping, Sweden

Author:
O. Koch, B. Beck, G. Heß, C. Richter, V. Waurich, J. Weber, C. Werner, U. Aßmann
Title:
Cloud-Based System Architecture for Driver Assistance in Mobile Machinery
DOI:
https://doi.org10.3384/ecp1714481
Note: the following are taken directly from CrossRef
Citations:
No citations available at the moment


Responsible for this page: Peter Berkesand
Last updated: 2019-11-06