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Abstract
Intelligent methodologies are beneficial in developing un-
derstandable multimodel simulation solutions. Nonlinear
scaling extends these applications by facilitating compact
nonlinear approaches already at the basic level. Compos-
ite local models can continue using linear methodologies
for various case-based models. The flexible handling of
the new structures and recursive tuning are the keys in
adapting the systems in varying operating conditions. The
recursive tuning of the scaling functions has two levels:
smooth adaptation and strong shape changes. Fuzzy set
systems further extend application areas of the models by
combining composite local models in a flexible way. The
extensions of the data-based methodologies are suitable
for developing these adaptive applications via the follow-
ing steps: variable analysis, linear models and intelligent
extensions. Evolutionary computation is used in the tun-
ing of the resulting complex models both the scaling and
interactions. Complex problems are solved level by level
to keep the domain expertise as an essential part.
Keywords: nonlinear systems, intelligent methods, recur-
sive tuning, composite local models, linguistic equations

1 Introduction
In parametric models, the output is calculated as a linear
combination of past inputs and past outputs. The output
at time t can depend on many signal values y from previ-
ous time instants. The signals should be chosen according
to the appropriate time delays. Fuzzy and neural models
are based on the same structures and input-output models.
Another solution for the operation changes with time is
to use time-dependent proportional hazard models, where
exponential functions are used to activate new hazards.

Linear methodologies extended with principal com-
ponents (Jolliffe, 2002; Gerlach et al., 1979) and semi-
physical models (Ljung, 1999) provide a feasible solution
for many applications. Nonlinearities have been handled
commonly with interaction and quadratic terms (Box and
Wilson, 1951). Linear parameter varying (LPV) extend
these solutions to decomposed systems (Hjartarson et al.,
2015; Theis et al., 2018).

Artificial neural networks (ANNs) could be extended
to highly complex architectures for handling compli-
cated interactions within different sources of varying data
(Schmidhuber, 2015). Fuzzy set systems can handle
knowledge-based information (Zadeh, 1965; Takagi and

Sugeno, 1985; Driankov et al., 1993; Dubois et al., 1999).
Nonlinear dynamic models can be built by using fuzzy set
systems (Babuška and Verbruggen, 2003) and low com-
plexity neural networks (Sahoo et al., 2013). In hybrid dy-
namic models, local models need to be combined in com-
plex systems (Sontag, 1981; Ljung, 2008; Jardine et al.,
2006).

Linguistic equation (LE) models use the static map-
ping and NARX/Nonlinear AutoRegressive with eXoge-
nous structures input models in the same way as fuzzy set
systems and neural networks. The main difference is that
the input and output variables are processed by a nonlin-
ear scaling method, which originates from the member-
ship functions used in fuzzy systems. (Juuso and Leiviskä,
1992; Juuso, 2004a) Constraints handling (Juuso, 2009a)
and data-based analysis (Juuso and Lahdelma, 2010), im-
prove possibilities to update the scaling functions recur-
sively (Juuso, 2011). Different fuzzy approaches can be
efficiently combined with LE models where the interac-
tions between the scaled variables are linear (Juuso, 2014).

The LE approach integrates the knowledge-based sys-
tems, neural networks and evolutionary computation in
the computational intelligence. Fuzzy set systems extend
to parallel and contradictory phenomena in finding the
operating areas, neural networks include more complex
interactions, and evolutionary computation provide flexi-
ble optimization tools. The compact LE structures have
many benefits: intelligent trend and deviation indices re-
veal changes and severity of them (Juuso, 2017). The non-
linear scaling is essential in dynamic models and prognos-
tics, e.g. for predicting fatigue risk by using intelligent
stress indices (Juuso and Ruusunen, 2013).

The recursive data analysis is based on two phases: first
the parameters of the nonlinear scaling and then the model
coefficients are analyzed to update the dynamic model.
The aim is to keep the model equations unchanged as
much as possible, i.e. interactions are not changing and
the new situations are handled by changing the meanings
of variables.

This paper focuses on the LE modelling approach based
on nonlinear scaling (Section 2) enhanced with recur-
sive solutions of updating the scaling and model interac-
tions (Section 3). Composite local models and intelligent
methodologies are combined in the multimodel LE simu-
lation (Section 4). Possibilities of the new structures and
recursive scaling are analyzed within a large set of previ-
ous applications in Section 5. Experiences and new pos-
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sibilities are discussed in Section 6 and conclusions and
future research are presented in Section 7.

2 Modelling methodologies
Nonlinear scaling and steady-state statistical modelling
with linear methodologies are the basis of the LE mod-
elling. The fuzzy meanings of the variables are embedded
in the nonlinear scaling. Interactions are analyzed by lin-
ear models and dynamic models are based on additional
structures.

2.1 Nonlinear scaling

The nonlinearities of the process are handled by the non-
linear scaling of the variables. The scaling functions are
monotonously increasing functions x j = f (X j) where x j
is the variable and X j the corresponding scaled variable.
The function f () consist of two second order polynomials,
one for the negative values of X j and one for the positive
values, respectively. The corresponding inverse functions
x j = f−1(X j) based on square root functions are used for
scaling to the range [-2, 2], denoted linguistification. In
LE models, the results are scaled to the real values by us-
ing the function f (). (Juuso, 2004a)

The support area is defined by the minimum and max-
imum values of the variable, i.e. the support area is
[min(x j),max(x j)] for each variable j, j = 1, . . . ,m. The
central tendency value, c j, divides the support area into
two parts, and the core area is defined by the central ten-
dency values of the lower and the upper part, (cl) j and
(ch) j, correspondingly. This means that the core area of
the variable j defined by [(cl) j,(ch) j] is within the support
area. The parameters of the functions are extracted from
measurements by using generalised norms and moments
(Juuso and Lahdelma, 2010).

2.2 Steady-state modelling

The steady-state simulation models are linear multiple in-
put, multiple output (MIMO) models~y = F(~x), where the
output vector ~y = (y1,y2, . . . ,yn) is calculated by a lin-
ear function F from the input vector ~x = (x1,x2, . . . ,xm).
Statistical modelling in its basic form uses linear regres-
sion for solving coefficients for a linear function. Lin-
ear methodologies are suitable for large multivariable sys-
tems. Quadratic and interactive terms are not used here.
Principal components compress the data by reducing the
number of dimensions with a minor loss of information
(Jolliffe, 2002). Partial least squares regression (PLS) is
an extension of these ideas (Gerlach et al., 1979). Known
semi-physical models of inputs are important in linear
modelling, see (Ljung, 1999).

The directions of the interactions analyzed with these
methodologies are aimed to be valid in a wider area than
the scaling functions of the model variables. The LPV
modelling further extends the feasible areas of the model
parameters.

2.3 Dynamic modelling
Data-driven modelling with parametric models, also
known as identification (Ljung, 1999), is the key method-
ology in the dynamic modelling. In NARX models, the
input and output values are chosen according to appropri-
ate system orders. The regressor vector consists of a finite
number of past inputs and outputs. The number may be-
come too high in nonlinear systems. The dynamic struc-
tures are reduced in dynamic models based on fuzzy set
systems or neural networks. The nonlinear scaling further
reduces the number of input and output signals needed for
all these systems.

3 Recursive modelling
Recursive data analysis facilitates the adaptation of the
functions to changing operating conditions: the parame-
ters of the scaling functions are obtained by using the ear-
lier analyzed norms, also the orders of the norms can be
re-analyzed if needed. Machine learning can be used to
decide if the recursive updates are needed.

3.1 Recursive nonlinear scaling
The parameters of the nonlinear scaling functions can be
recursively updated by including new equal sized sub-
blocks in the calculations, i.e. the norm for several sam-
ples can be obtained as the norm of the norms of the indi-
vidual samples:

||Ksτ Mp
j ||p = {

1
Ks

Ks

∑
i=1

[(τ Mp
j )

1/p
i ]p}1/p = [

1
Ks

Ks

∑
i=1

[(τ Mp
j )i]

1/p,

(1)
where Ks is the number of samples {x j}N

i=1. In automation
and data collection systems, the sub-blocks are normally
used for arithmetic mean (p = 1). The norm values can
be recursively updated with (1), and a new search for the
orders is done only if the values change considerably (Ju-
uso, 2011). The number of samples can be increasing or
fixed with some forgetting, and weighting of the individ-
ual samples can be used in the analysis. The nonlinear
scaling need to be done by a set of functions when the
nonlinearities are very strong (Juuso and Lahdelma, 2010)
and operating condition specific.

The analysis is the same for any combination of the sub-
blocks. The central tendency value is chosen by the point
where the skewness changes from positive to negative, i.e.
γ

p
3 = 0. Then the data set is divided into two parts: a lower

part and an upper part. The same analysis is done for these
two data sets. The estimates of the corner points, (cl) j
and (ch) j, are the points where γ

p
3 = 0 for the lower and

upper data sets, respectively. Since the search of these
points is performed by using the order of the moment, the
resulting orders (pl) j, (p0) j and (ph) j are good estimates
when additional data sets are used.

There is all the time an active set of scaling functions
(Figure 1. The functions are tuned to appropriate operat-
ing areas by using the corresponding sets of data collected
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Figure 1. Recursive updating of scaling functions.

from the sub-blocks of the previous periods. The feasibil-
ity ranges should be wider for the working point variables.
There are two levels of complexity for updating the scal-
ing functions:

1. Individual scaling functions are smoothly adapted by
using the existing norms (1) for the new data. This
level requires only the values for the norms with the
orders (pl) j, (p0) j and (ph) j.

2. The shape of the functions is modified by recursively
updating the norm orders. In this case, the orders
of the norms are updated from the data of the sub-
blocks.

In both methodologies, the monotonous increase of the
functions are checked and corrected if needed.

The scaling functions of the working point variables are
aimed to cover the whole modelling area, i.e. they are
analyzed with the same methodology, but for the set of the
data includes several operating conditions.

3.2 Interactions
The model parameters can be updated by re-running the
regression after the variables, whose scaling functions
have been recursively updated, have been re-scaled. This
is done for specific operating areas by using appropriate
data. The procedure is the same for all submodels and
working point models in any operating area.

Different operating areas can be analyzed with cluster-
ing to find feasible areas for local models. Cluster analysis
provides hundreds of algorithms for the data-driven anal-
ysis (Xu and Tian, 2015). Iterations are needed since the
clustering algorithms work better with linear systems, i.e.
after nonlinear scaling.

4 Multimodel LE simulation
Multimodel approaches divide the problem into smaller
parts for developing separate models for subprocesses or
different stages in the process operation interconnected
with process streams. Additional properties are achieved
because equations and delays are allowed to vary between
different submodels. The working areas can be defined
by a separate working point model. The submodels are
developed using the case-based modelling approach.

4.1 Composite local models
The composite local models use linear approximations of
the nonlinear system in different neighbourhoods. If the
partitioning is based on working point variables, the parti-
tioning can be used in weighting the local models. In lin-
ear parameter varying (LPV) models, the matrices of the
state-space models depend on an exogenous variable mea-
sured during the operation (Hjartarson et al., 2015; Theis
et al., 2018). Piecewise affine (PWA) systems extend the
local linear models to a polyhedral partition where the
models can be state-space or parametric models (Christo-
phersen, 2007). The model switches between different
modes as the state variable varies over the partition. A
high number of local models brings an overfitting risk.

Working point variables and their interactions can form
a working point index for LPV models which are useful in
smoothing the operation in varying operating conditions.
The number of specific PWA systems can be reduced by
using fuzzy set systems.

The LE models are defined by the parameters of the
scaling functions and the coefficients of the interaction
models. The idea of the exogenous variables can be used
for these parameters, which opens a set of new modelling
approaches for the nonlinear parameter (NPV) varying
models where the exogenous variables are extended with
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Figure 2. Multimodel LE system with a fuzzy decision module.

working point models (Figure 2).

4.2 Intelligent systems
The multimodel LE system consists of different types of
submodels, a working point model and a fuzzy set sys-
tem (Figure 2). The basic form includes a set of linguis-
tic equations where each equation is specific for a certain
phenomena which can be active in several operating con-
ditions. The working point model calculates the degree
of membership for each operating area which taken as a
degree of membership for all the active equations of the
case. Each model produces an alternative solution whose
degree of membership [0,1] is obtained by the fuzzy set
system. All alternative solutions are aggregated and the
response is defuzzified. Since the nonlinear scaling is op-
erating condition specific, each active equation of each ac-
tive operating condition produces an alternative result.

For certain phases of the process, the submodels in Fig-
ure 2 can be composite local models which extend the op-
erating area of the submodels. The NPV models include
a nonlinear parameter handling based on the LE working
point models, i.e. the coefficients of the equations depend
on the operating conditions. As much as possible is done
with composite models and fuzzy methodologies are used
for uncertainty and decisions.

Fuzzy set systems expand composite local models to
partially overlapping models. Fuzzy models combine lo-
cal modelling approaches and facilitate gradual changes.
Takagi-Sugeno (TS) fuzzy models are based on linear sub-
models. The smoothing problems around the submodel
borders need special techniques, e.g. smoothing maxi-
mum, or by making the area overlap very strong as it is
done in the ANFIS method (Jang, 1993) which is practice
a smoothing algorithm.

In the multimodel LE systems, a fuzzy decision system
is used for selecting and weighting suitable nonlinear sub-
models for each situation (Figure 2). The fuzzy system
based on a working point model or a single working point
index provides several alternatives with different degrees

of membership. In Linguistic Takagi-Sugeno fuzzy mod-
els (LTS), the fuzzy partition is defined with the same vari-
ables as the models and the nonlinearities are handled with
the scaling functions and the interaction part with fuzzy
set systems. The multimodel can be developed and tuned
with the same methods as the normal TS models (Juuso,
2009b).

The fuzzy calculations are beneficial if there are par-
allel gradually activating phases or contradictory models.
Decomposition is needed to extend the solutions to dif-
ferent subprocesses, process phases, phenomena and mul-
tiple operating conditions. In addition to spatial or log-
ical blocks, the decomposed modelling can be based on
different frequency ranges. The mixed systems may also
include models based on the first principles.

In deep neural networks, an ensemble of redundant net-
works improves generalisation by averaging the process
of creating multiple models and combining them to pro-
duce a desired output (Xiao et al., 2018). Naturally, this
methodology could be used together with the nonlinear
scaling. However, the fuzzy methodologies are preferred
to keep the understanding of the subsystems strong.

4.3 Evolutionary computing
Evolutionary computing is widely used to tune intelli-
gent systems which incorporate expert knowledge with
data. Genetic algorithms (GA) are well suited for LE
models based on nonlinear scaling and linear interac-
tions. The scaling functions handle efficiently the parame-
ter constraints of the monotonously increasing second or-
der polynomials and the whole system is configured with
a set of parameters. (Juuso, 2009a)

All the interactions within the multimodel LE system
(Figure 2) are represented with compact linear equations
whose coefficients can be included in the tuning based
with genetic algorithms. The coefficients of the equations
are re-analyzed for different operating conditions after up-
dating the scaling functions.

The GA approach is flexible: an appropriate set of pa-
rameters is taken in the optimization and the performance
is evaluated with the same methodology in all these lev-
els. The recursive tuning of the scaling functions can be
done with GAs without using the data-driven approach
presented in Section 3.1.

5 Applications
Nonlinear scaling forms the basis for the LE modelling: an
important benefit of the linear approach is that the models
can be inverted, technically to any direction. The com-
pact basic solution makes extensions to dynamic and case-
based systems possible. Complex models for steady-state
and dynamic systems can be built with the cascade and
interactive structures.

Possibilities of the recursive tuning are analysed for the
earlier applications presented in (Juuso, 2018). The topics
of these applications are explained with more details in
papers referred in this section. This paper focuses on how
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Table 1. Steady-state LE model applications.

Case Application area Modelling Recursive analysis
Electric furnace DSS for process design Nonlinear models transformed Raw materials

to LE models and Interactions
Lime kiln Feedforward control Fuel feed in changing capacity Fuel properties

conditions
Solar collector field Control adaptation Working point model: Deterioration of

irradiation, temperature, process condition
difference, special cases
with fuzzy set systems

Continuous cooking Quality control Quality forecasting Raw material
variations

Fatigue Stress contributions LE based stress-cycle curve: Deterioration of
-2nd order scaling for the stress process condition
-logarithmic scaling for the cycles

Water treatment Feedforward control Turbidity for control Seasonal effects
Forecasting residual aluminium

Wastewater treatment Diagnostics Operating conditions Incoming wastewater
purity

Table 2. Dynamic LE model applications.

Case Application area Modelling Recursive analysis
Gas furnace Modelling Development and tuning: Fluctuations

training, validation, testing
Solar collector field Controller tuning Time varying transport delay Deterioration

Cloudy periods of the condition
Fatigue Forecasting fatigue risk Cumulative sum of scaled Deterioration

stress contributions process condition
Rolling mill, LHD machines

Water treatment Controller tuning Water quality indicator Seasonal effects
Water circulation
Drinking water

Condition monitoring Prognostics Recursive tuning Deterioration
of the condition

the applications can be improved with the new structures
and recursive tuning, see the column Recursive analysis in
Tables 1, 2 and 3.

5.1 Steady-state LE models
Steady-state LE models are mainly used in adaptation and
feedforward control (Table 1). In most cases, the models
including only a single linear equation can be expanded
in a straightforward way. The first LE model developed
for designing submerged arc furnaces was an exception
which used well known relations represented by five equa-
tions (Juuso and Leiviskä, 1992). Variations of raw ma-
terial properties can be compared within additional lev-
els. A steady-state LE model was developed from the pro-
cess measurements in an early lime kiln control applica-
tion where varying fuel properties require attention (Juuso
et al., 1997). The working point model is an essential part

of the model-based LE control of a solar power plant (Ju-
uso and Yebra, 2013). During the years, the field condition
has deteriorated, which has required recursive updates.

For continuous cooking, a LE model was developed for
predicting the Kappa number, which is widely used qual-
ity variable (Leiviskä et al., 2001). Raw material variation
should be taken into account.

Stress-cycle (S-N) curves, also known as Wöhler
curves, are represented by a compact linguistic equa-
tion (Juuso and Ruusunen, 2013). Machine deterioration
changes the meanings of the stress levels.

In drinking water applications, models have been de-
veloped for forecasting and control (Tomperi et al., 2013).
Seasonal effects are important in these applications. Oper-
ating conditions are detected in diagnosing the wastewater
treatment process (Juuso and Laakso, 2013). The strong
effect of the biomass performance requires recursive up-
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Table 3. Decomposed LE model applications.

Case Application area Modelling Recursive analysis
Lime kiln Fuel quality Controller tuning by using Fluctuations

multiple models in raw materials
Adaptive control Working point control Varying operating

conditions are essential
Solar collector field Controller tuning Models for different operating Irradiation

for oil flow conditions fluctuations
Distributed parameter models Varying situations

at the collector field
Batch cooking On-line forecasting Three interactive models: alkali, New structure for

lignin and dissolved solids interactions and phases
Fluidised bed Forecasting Three interactive models: New structure
granulation temperature, humidity interactions and phases

and granular size
Fed-batch On-line forecasting Submodels of three growth phases, New structure for
fermentation each including three interactive interactions and phases

models Activation and decline
Totally nine interactive models of partially simultaneous

processes
Wastewater treatment Detection of operating Three submodels: load, treatment Biomass performance

conditions and settling
Trend analysis

dates.

5.2 Dynamic LE models
The basic dynamic LE model is represented by a compact
parametric model

Y (t)+a1Y (t−1) = b1U(t−nk)+ e(t) (2)

for the scaled variables Y and U . More complicated input-
output NARX models containing are simplified by using
the nonlinear scaling. The models can have an appropri-
ate number of variables. The approach was first tested in
a gas furnace data provided by (Box and Jenkins, 1970).
The dynamic models of the solar plant are based on test
campaigns, which cannot be planned in detail because of
changing weather conditions (Juuso, 2003a). The irradi-
ation changes and varying cloudy conditions have strong
effects.

The basic dynamic flotation model is the core of the
quality indicator in water treatment (Joensuu et al., 2005).
A dynamic LE model has been used for the fatigue predic-
tion in (Juuso and Ruusunen, 2013). In all these models,
only one equation is needed. The applications are indi-
rect measurements and controller tuning (Table 2). Drink-
ing water applications focus on model-based control and
forecasting (Tomperi et al., 2016). The multimodel struc-
tures (Juuso et al., 2009) and trend analysis (Tomperi et al.,
2017) are important in the wastewater treatment.

The new structure and recursive tuning allow the han-
dling of deterioration of condition, fluctuations and sea-
sonal effects (Table 2). The recursive tuning was already

used in the condition monitoring application. In most real
applications, the changes are too fast to use recursive up-
dates online. The offline analysis expands the libraries for
predefined adaptation.

5.3 Decomposition in LE models
The multimodel LE system can include several submodels
and complex interactions (Table 3). All basic submodels
are represented by (2) extended to an appropriate number
of variables. The model with a fuzzy decision module was
first used for a lime kiln (Juuso, 1999) and then for a solar
thermal power plant (Juuso, 2003a). The lime kiln model
had six operating areas defined by the production level and
the trend of the fuel feed (increasing, decreasing). The
model of the collector field includes four operating areas:
start-up, low, normal and high operation. Additional fuzzy
models have been developed for special situations (Juuso
et al., 2000). In these cases, the decision module use work-
ing point variables are provides specific degrees of mem-
bership for all the submodels. Recursive tuning is needed
only for specific submodels in new situations.

Interactive dynamic models were needed in several
cases: batch cooking (Juuso, 2003b), fluidised bed gran-
ulator (Mäki et al., 2004), industrial fed-batch fermenter
(Saarela et al., 2003) and wastewater treatment (Juuso
et al., 2009). Linguistic equations, neural networks and
fuzzy modelling with several variants have been compared
by using the process data obtained from the fed-batch fer-
menter. The LE models are sufficiently compact to be used
in the complex system presented in Figure 2.
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The phases and interactive submodels make the mod-
elling complicated (Table 3). Additional requirements
were recently detected for the fed-batch fermentation case,
where the activation and decline of different phenomena
need be taken into account (Juuso, 2019). The new struc-
ture of integrating composite submodels and intelligent
systems (Figure 2) and recursive tuning provide improve-
ments for the handling of interactions and phases as well
as the fluctuations of fuel properties and performance of
biomass in the treatment.

Phenomenological models can be integrated with these
solutions through a data-driven model which provides the
parameters needed in the models of phenomena.

5.4 Distributed parameter LE models
In the distributed parameter models, the solar collector
field is divided into modules, where the dynamic LE mod-
els are applied in a distributed way (Juuso, 2004b). The
same single equation model (2) with an appropriate num-
ber of variables is used in all modules. Element locations
for partial differential equations (PDEs) are defined by the
flow rate. In cloudy conditions, the heating effect can be
strongly uneven.

The new structure and recursive tuning provide pos-
sibilities to handle local variations of the collector field
which become important if the temperature increase is
high (Table 3).

6 Discussion
The nonlinear scaling methodology is the key in the ex-
tensions of the linear methodologies. The scaling can
be recursively updated and used in both steady-state and
dynamic applications with additional structures. Several
steady-state and dynamic models are combined with fuzzy
set systems. Distributed parameter systems can use the
same algorithms. In the applications discussed in Section
5, the scaling functions were developed before the current
data-based analysis. New structures and recursive tuning
provide additional possibilities for them.

The variable specific recursive analysis of the param-
eters of the scaling functions is feasible throughout the
modelling. This is important in the smooth adaptation of
the submodels and introducing models for new operating
areas. The interactions are tried to keep unchanged but
can be retuned when needed.

The multimodel structure facilitates deep learning ex-
tensions. All parameters of the multimodel LE systems,
including any subsystem or model, can be updated with
the same genetic tuning. Constraints are taken into ac-
count in the coding which means that penalties are not
needed in the optimisation.

The recursive approach is in this paper presented as an
offline analysis. The methodology is applicable for the on-
line analysis as well. Statistical process control provides
additional tools for detecting changes, anomalies and nov-
elties. The existing scaling functions provide a basis for

assessing the quality of new data: outliers should be ex-
cluded, but the suspicious values may mean that the oper-
ating conditions are changing and the support area should
be extended. The online analysis could be used in some
subsystems in specific operating areas.

7 Conclusions and future research
The nonlinear scaling approach extends the application ar-
eas of linear methodologies to nonlinear modelling: the
meanings of variables and interactions are analysed either
sequentially or simultaneously. Local nonlinear models
and recursive tuning reduce the number of the local mod-
els. Intelligent methodologies are essential parts of the
system: the close connection to the fuzzy set systems pro-
vides a good basis for understandable models and evolu-
tionary computation is used in the tuning of the resulting
complex models. Composite local models and intelligent
systems can be efficiently combined. The basic models are
compact and additional properties, including dynamics,
uncertainty and decomposition, are included if needed.
The recursive analysis is a basis for future research in var-
ious applications discussed in this paper.
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