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Abstract 

A feasibility study was carried out to assess the 

possibility of developing prediction models for 

monitoring drying conditions of wood coatings in one of 

Europe’s largest and most modern coating plants for 

exterior cladding. These models were based on data 

from real-time Process Analytical Technology (PAT) 

sensors, measuring airflow and air direction, 

temperature and relative humidity). The study revealed 

that the information from the PAT sensors gave 

sufficient input to accurately model the complex drying 

conditions and their interrelations. Modelling was 

carried out using both Principal Component Analysis 

(PCA) and PLS-regression in both its PLS1 and PLS2 

manifestations. In addition, the diagnostic prediction 

performance RMSEP between PLS1 and PLS2 models 

were not significantly different. This is advantageous 

for an industrial implementation concerning re-

calibration operations: PLS1 requires 40 separate 

calibrations whereas PLS2 requires only one, because 

PLS1-R is a regression of a singular output variable (y-

variable) and PLS2-R of several simultaneous, 

correlated output variables. While a single calibration 

based on PLS2 will take approximately one hour, the 

PLS1 approach will take more than a week. 

Keywords: process monitoring; exterior wood coatings; 

wood cladding; oven drying; multivariate modeling; 
PLS1-R, PLS2-R 

1 Introduction 

Wooden cladding is the most common façade material 

for residential buildings in Norway, most often painted 

with multi-coat opaque high-build (>60-100 µm dry 

film thickness) to very high-build systems (>100 µm dry 

film thickness). Traditionally cladding has been painted 

by hand after installation, but the last years have seen a 

strong trend towards industrial coating application in 

Scandinavia (Hundhausen et al., 2016). Industrial 

application has the advantage of offering customers 

cladding that does not need immediate maintenance 

after mounting; moreover, industrial coating takes place 

under controlled conditions, which is of special 

importance as water-based coating systems today 

dominate the marked driven by environmental 

requirements for reduced amounts of volatile organic 

compounds (Elliott and Glass, 2000). While in the 

furniture and joinery industry UV-curable coatings are 

widely used, wood products for exterior applications are 

finished as physically dried coatings. Thus air velocity, 

relative humidity (RH) and ambient air temperature are 

the three decisive factors in convection drying 

(Nienhuis, 2014) causing water to flow from the lower 

to the upper part of coating films (Trent, 1992; Beetsma, 

1996; Vanderhoff, 1966). Deficient drying can cause 

blocking, i.e. coated parts stick together after stacking 

which results in considerable transport damages, or can 

significantly affect coating adhesion, which promotes 

coating defects like paint flaking. In addition, the dry-

to-recoat stage in industrial drying is critical, as it is one 

of the major factors controlling the overall batch 

production rate. Dry-to-recoat is the time interval 

needed before a second coat can be applied without risks 

for further defects, such as blistering or loss of adhesion 

(Koleske, 2012). In short, controlling drying is of 

overall importance regarding process capacity and yield.  

The Norwegian cladding producer Gausdal Bruvoll SA 

has recently established one of the largest and most 

modern coating plants for industrial cladding in Europe 

(Hundhausen et al., 2018a). Controlled fast drying is 

crucial but technically challenging as different “orders” 

(customer specified batches of boards) often with 

different coatings pass through the approximately 70 m 

long multi-level dryer with a feed speed of 18 m/min 

(Hundhausen et al., 2016, 2018b). Reliable on-line 

drying monitoring is highly desirable to increase 

production yields by avoiding coatings defects. 

A feasibility study has been carried out to assess the 

possibility of developing prediction models for 

monitoring drying conditions of exterior wood coatings 

in 8 out of 9 possible trajectories in Gausdal Bruvoll’s 

dryer. Can drying conditions air flow, transport 

direction, air temperature and relative humidity 

recorded through a set of real-time Process Analytical 

Technology (PAT) (Bakeev, 2010) sensors be acquired 

accurately enough for process operators to run the 

drying facility reliably with a view of process optimality 

across many types of paints and coating combinations?  

The first research objective in the present study is to 

assess the real-time on-line information from a set of 
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strategically placed PAT sensors as input variables for 

modeling.  

The second research objective is strictly data analytical. 

Partial Least Squares 1 (PLS1) regression modelling is 

compared with its PLS2 alternative (Marten and Næs, 

1989; Esbensen and Swarbrick, 2018). PLS1-R is 

regression of a singular output variable (y-variable); 

PLS2-R is regression of several simultaneous, 

correlated output variables (y-variables). The rationale 

for evaluating both modelling strategies depends on the 

inherent complex industrial oven conditions: If PLS2 

prediction results are comparable to the standard PLS1 

results; this will save a significant amount of the work 

for model updating and/or maintenance during uptime 

industrial operations. PLS2 requires only one calibration 

operation while PLS1 in this case would require 40 

separate calibrations. If the single calibration based on 

PLS2 takes one hour, the PLS1 approach will take more 

than a week, so PLS2 is a much more efficient approach 

and a significant time saver in the industrial context, 

which needs to have a strong focus on minimal 

downtime. 

2 Materials & methods 

2.1 The hot air dryer 

The hot-air-dryer has a length of 73 m and a width of 10 

m. It is horizontally divided into 3 drying and 1 cooling 

zone, and is vertically stacked with three floors (Figure 

1 and 2). While the zones are separated by hanging flaps, 

the floors are not separated, making the zones the 

operative unit in the drying process. It is up to the 

operators to make effective use of the vertical floors; 

there are significant advantages in planning the 

compound drying of several batches of boards (termed 

‘orders’) intelligently.  This requires a reliable PAT-

based ‘prediction of drying-end-results’ facility, for 

which optimal monitoring of the compound drying will 

be critical. 

The physical drying of the waterborne paint coating is 

based on the parameters air T, air speed, RH and drying 

time.  The air is blown downwards onto the coating 

through tubes (Fig. 2).  

 

Figure 1. Simplified illustration of the nine drying 

trajectories for wood cladding. In the example indicated 

with red color, data from trajectory 1 was used as the input 

X data in calibration of the prediction model. The drying 

conditions in all eight other trajectories were predicted 

based on the two alternative regression models PLS1 and 

PLS2. 

As indicated with red color in Figure 1 the data from 

trajectory 1 was used as the input X data in calibration 

of the regression models. The drying condition 

described by the 40 output variables covering all the 

other eight trajectories were predicted based on the two 

alternative regression-modelling strategies PLS1 and 

PLS2, and compared see section 4.2. 

 

 

Figure 2. The dryer in the coating plant, showing the 

upper, middle and lower floors in one drying zone. Note 

the air ducts close to the ceiling, which supply the drying 

air to all levels.  

 

Partial Least Squares 1, PLS1 (single output) and 

Partial Least Squares 2, PLS2 (multiple y-outputs) 

were used to calibrate regression models for the drying 

conditions. 

 

2.2 Sensors on the move 

An innovative element in acquiring simultaneous data 

with which to perform a first model of the complex 

drying oven conditions was to send a recording ‘sensor 
box’ through the entire drying cycle. The box includes a 

temperature and relative humidity (RH) sensor (S-THB-

M002 Sensor, Onset Computer Corporation, Bourne, 

MA, USA) and three hot wire anemometers (T-DCI-

F350-W5B3, Onset Computer Corporation) measuring 

the air flow horizontally in transport direction, 

horizontally perpendicular to the transport direction and 

vertically to the transport direction. All sensors have a 

maximum update rate of 400 ms. The measurements 

were recorded with a sampling rate of 1 Hz using a 

multi-channel data logger (Hobo H22, Onset Computer 

Corporation). 
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Figure 3. The moving “sensor box” equipped with 

temperature/RH sensors and three hot-wire anemometers, 

measuring along – and across the contemporary box 

velocity vector plus vertical air velocity. 

 

2.3 Multivariate analysis and regression 

modelling 

PLS1 regression is well described in the chemometric 

literature (Marten and Næs, 1989; Esbensen and 

Swarbrick, 2018) and numerous other background 

references herein. The PLS1 model is designed to 

maximize the effective correlations between the X-

space (X-variables: PAT sensor recordings) and a 

singular y-variable. Here one also finds a description of 

the superior PLS modelling vs. prediction features in 

relationship to PCR (Principal Component Regression) 

and MLR (Multiple Linear Regression). The PLS1 

approach has been the overwhelmingly most popular 

approach within process chemometrics because of the 

optimal modelling ability when dealing with one y-

variable only.  

Originally, in the early history of chemometrics, it 

was considered an advantage to be able to employ a 

PLS-regression modelling facility also in the case of a 

full multivariate Y-space (a multivariate set of y-

variables), in cases where such a setup was required. 

The PLS2 modeling/prediction/validation situation is 

quite similar to PLS1, only the [X-space]-[Y-space] 

correlation modelling makes use of PLS components in 

both variable spaces simultaneously. In this fashion, the 

individual yi variables are modelled based on the same 

foundational X-Y model. This only succeeds in the case 

in which all influential y-variables are strongly 

correlated – otherwise it is the overwhelming experience 

that modelling the individual yi variables results in 

optimal prediction behavior – which is the reason for the 

dominant position of PLS1. 

There only exist a few successful PLS2 application 
cases in the literature, e.g. Esbensen et al. (2001) who 

interconnected an acoustic chemometric approach using 

‘clamp-on’ acoustic sensors (X) with laser velocimetry 

data in a radial pipeline profile. Their final feasibility 

demonstration successfully employed PLS2 inter-

calibration of the acoustic monitoring data (X) with the 

laser velocimetric reference profiles (Y) using 39 y-

variables. 

A higher-level treatment of PLS2 method, including two 

practical application examples, can be found in 

(Stoccero et al., 2019). 

With PLS1, the Y-data consist of a singular vector 

holding the ‘reference values’ used in calibration of the 

model. In PLS2, there are multiple y-output variables, 

so Y is a matrix in this case. Thus with PLS two 

alternative models are available, which is different from 

e.g. Linear regression and principal component 

regression (PCR) where only X is modelled; here no 

equivalent to PLS exists. The model for X and Y can be 

seen in equation (1) and (2) below.  

 

 

Figure 4. PLS data matrices (X and Y) and the resulting 

scores (T and U), loadings (P and Q) and Loading weights 

(W). 
 

𝑋 = 𝑇 ∙ 𝑃𝑇 + 𝐸       (1) 

𝑌 = 𝑈 ∙ 𝑄𝑇 + 𝐹       (2) 

 

In the PLS approach the covariance between t and u are 

maximized which connects the two models.  

 

PLS1 algorithm 

Let 𝑋𝑓 = 𝑋 and 𝑦𝑓 = 𝑦    For f = 1, 2,…, A perform 

steps 2 to 6 

1. 𝑤𝑓 = 𝑋𝑇 𝑦𝑓 ‖𝑋𝑇 𝑦𝑓‖⁄  (normalized to length 1) 

2. 𝑡𝑓 = 𝑋 𝑤𝑓 

3. 𝑞𝑓 = 𝑡𝑇𝑦𝑓(𝑡𝑓
𝑇𝑡𝑓)

−1
 

4. 𝑝𝑓 = 𝑋𝑓
𝑇𝑡𝑓(𝑡𝑓

𝑇𝑡𝑓)
−1

 

5. 𝑏 = 𝑢𝑇𝑡(𝑡𝑇 𝑡)
−1

 

6. 𝑋𝑓+1 = 𝑋𝑓 − 𝑡𝑓𝑝𝑓
𝑇 and 𝑦𝑓+1 = 𝑦𝑓 − 𝑏𝑓𝑡𝑓

𝑇 

7. f=f+1 

 

Repeat 1 through 7 until f = A (the optimal number of 

components found by validation) 
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The compact regression coefficients for the Y variable 

can then be found like this: 

 

𝑏̑ = 𝑊(𝑊𝑇𝑋𝑇𝑋𝑊)−1𝑊𝑇𝑋𝑇𝑦                     (3)    

Predictions based on new X-data can then be 

calculated: 

 

𝑦̑ = 𝑋𝑏̂
 
 +  𝑏0           (4) 

 

The PLS2 algorithm is similar but has a few more steps: 

 

PLS2 algorithm 

Let 𝑋𝑓 = 𝑋 and 𝑌𝑓 = 𝑌    For f = 1, 2,…, A perform steps 

2 to 6 

1. As the initial 𝑢𝑓 vector, use any column in Y  

2. 𝑤𝑓 = 𝑋𝑇 𝑢𝑓 |𝑋𝑇𝑢𝑓|⁄  (normalized to length 1) 

3. 𝑡𝑓 = 𝑋𝑤𝑓 

4. 𝑞𝑓 = 𝑌𝑇𝑡𝑓/|𝑌𝑇𝑡𝑓| (normalized to length 1) 

5. 𝑢𝑓 = 𝑌𝑞𝑓 

6. 𝑝𝑓 = 𝑋𝑇 𝑡(𝑡𝑇 𝑡)
−1

 

7. 𝑏 = 𝑢𝑇𝑡(𝑡𝑇 𝑡)
−1

 

8. 𝑋𝑓+1 = 𝑋𝑓 − 𝑡𝑓𝑝𝑓
𝑇 and 𝑌𝑓+1 = 𝑌𝑓 − 𝑏𝑡𝑓𝑞𝑓

𝑇 

9. f=f+1 

 

Repeat 1 through 9 until f=A (the optimal number of 

components found by validation) 

The compact regression coefficients for the Y variables 

can again be found like this: 

 

𝐵̑ = 𝑊(𝑊𝑇𝑋𝑇𝑋𝑊)−1𝑊𝑇𝑋𝑇𝑌          (5) 

 

Predictions based on new X-data can then be 

calculated: 

 

𝑌̑ = 𝑋𝐵̂
 
 +  𝐵0           (6) 

In evaluating the regression model, the root mean 

squared error of prediction RMSEP, offset, slope and 

correlation coefficient are commonly used as model 

quality indices. Besides these, visual evaluation of the 

relevant score plots, loading weights plots, explained 

variance plots also provide useful information for 

calibrating and development of the prediction model 

(Marten and Næs, 1989; Esbensen & Swarbrick, 2018). 

The root mean squared error of prediction is calculated 

as:  

RMSEP = √∑ (𝑦̂i,predicted−𝑦i,reference)
2𝑛

𝑖=1

𝑛
             (7)                                                                         

 

3 Experimental 

3.1 Air dryer experiments 

The sensor box was mounted on a cladding board of 

5518 mm length in three positions (left, middle, right) to 

record the climate across the width of the dryer. The 

position on both sides was 168 mm from the board end 

(Figure 5), and the box center was positioned 2759 mm 

from both ends. This was done for each of the three 

floors, giving nine runs (Figure 1 and Figure 2). After 

each run, the data were downloaded and deleted from 

the logger. The run-through time in each of the three 

drying zones was also recorded to assign the 

measurements to the zones. No other boards were in the 

dryer during the experiment. 

 

 
Figure 5. Positiong of the board and the box on the right 

side towards the gangway, trajectory 2 in Figure 2. 

4 Results &discussion 

4.1 PCA 

The sensor recordings are represented as variables in the 

PCA X matrix, with the successive recording time 

points serve as objects. To get an overview of the full 

data set and how samples and variables relate to each 

other; PCA was used as the initial analysis method. All 

variables from all nine trajectories were included in this 

analysis. 

The PCA score plot in figure 6 shows a marked 

depiction of the score value development with the three 

different drying zones (blue, red and green) clearly  
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separated. No outliers can be seen in the data so all the 

samples and variables will be included in the next data 

modelling steps. 

In the corresponding PCA loading plot, Fig. 7, all 

variables related to air velocity (vertical, horizontal 

along and horizontal across) are located close to the 

origin meaning their variance and covariance are less 

influential than the other variables occupying positions 

near the perimeter of this plot. These latter are the 

variables most influential on the model (variables that 

display a strong systematic inter-correlation), while the 

variables close to the origin contain a significant amount 

of irregular structure (noise). 

4.2 PLS1 and PLS2 modelling results 

Each variable in trajectory 2-9 was selected as an 

independent y-variable and was modelled by PLS1, 

which resulted in 40 separate PLS1 models. PLS2 was 

used to calibrate all the variables at once, which resulted 

in one PLS2 model also with 40 outputs.  

Selection of training vs. validation data sets: The 

training data set was every second sample and the 

validation set was the other half of the data from the 

sensor box. Each PLS1 and PLS2 model was validated 

by this validation strategy (Esbensen and Swarbrick 

2018). Results from the PLS1 and PLS2 models are 

reported and compared in Table 1 below.  
 

Start of drying 

End of 

drying 

Figure 7. PCA – score plot of data from all nine drying trajectories as revealed by a full run-though in the drying oven 

of the “sensor box”. Blue=drying zone 1, Red=drying zone 2 and Green=drying zone 3. 

 

Time in zone 

Rel. Moisture Drying zone 

Time in dryer 

Temperature 

Air velocity horizontal along 

Air velocity vertical 

Air velocity horizontal across 

Figure 6. Correlation loadings corresponding to the score-plot in figure 6 (above) showing how the 8 variables from 9 

drying trajectories relate to each other along PC1 and 2. 
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Figure 8a shows the score-plot of the first two principal 

components (t1 vs t2). As can be seen it is possible to 

completely separate the samples from the three drying 

zones. No outliers were observed in the score plots t1-t2 

nor in the score plots for the higher components.  

The loading weights plot shows in figure 8b shows that 

all variables contribute to the model for the first three 

components. Although the variable “airflow horizontal 

across” shows relatively low loading values the 

prediction performance of the model does not improve 

if this variable is deleted. 

Overfitting of regression models resulting from using 

too many components in the model is always a risk 

(Esbensen and Swarbrick 2018). As shown in the 

residual validation variance plot in figure 8c it is not 

immediately obvious how many components is optimal 

since the curve is decreasing for all the eight possible 

components. Since the model is validated based on 

independent data (test set validation), and there are 40 

output variables to “satisfy” at once, we decided to use 

three components in the final prediction model, without 

loss of generality.  

 
Figure 8. PLS2 model, a) Score plot t1-t2-t3, b) Loading 

weights for component 1, 2 and 3, c) Residual validation 

variance.  

 

Figure 9 shows the predicted and reference data for a 

randomly selected trajectory, number 4. Figure 9a-c 

shows that the predicted air velocities can outline the 

main drying trends in the data well, but there is also a 

significant amount of irregular scatter along these 

trends, which we believe is due to the less influential air 

velocity data from the interior, very complex between-

track and between-floors crosswinds set up by the 

ducted drying air supplied from the air ducts along the 

ceiling of the oven only.  

We find these first foray predictions quite acceptable 

and maybe even better that the reference measurements 

recorded with the sensor box which contains a 

significant amount of random noise in themselves. 

The plots of the predicted temperature and relative 

moisture content in figure 9d-e shows that the 

predictions follow the reference data very  closely, 

which is promising for the eventual decision of 

implementing this modelling strategy in the industrial 

production. 

 

 

 
Figure 9. Predicted drying condition in trajectory 4 a) air 

velocity vertical b) air velocity horizontal across c) air 

velocity horizontal along d) Temperature e) Relative 

moisture content 

 

A comparison of PLS 1 and PLS2 prediction results is 

shown in table 1. In all trajectories, the RMSEP values 

are similar for the two alternative modelling methods. 
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Table 1. PLS1 and PLS2 prediction comparison 

Comparison of PLS1 and PLS2 model predictions 
Trajectory Name of predicted variable PLS1 

RMSEP 
PLS2 

RMSEP 

2 Air velocity vertical [mm/s] 10,34 10,38 

2 Air velocity horizontal across [mm/s] 9,16 9,17 

2 Air velocity horizontal along [mm/s] 34,60 34,63 

2 Temperature [C] 0,04 0,04 

2 Relative moisture [%] 0,15 0,15 

3 Air velocity vertical [mm/s] 9,94 9,95 

3 Air velocity horizontal across [mm/s] 7,93 7,96 

3 Air velocity horizontal along [mm/s] 21,23 21,27 

3 Temperature [C] 0,04 0,04 

3 Relative moisture [%] 0,096 0,097 

4 Air velocity vertical [mm/s] 12,28 12,33 

4 Air velocity horizontal across [mm/s] 10,15 10,16 

4 Air velocity horizontal along [mm/s] 28,59 28,62 

4 Temperature [C] 0,085 0,085 

4 Relative moisture [%] 0,09 0,09 

5 Air velocity vertical [mm/s] 12,73 12,99 

5 Air velocity horizontal across [mm/s] 8,95 9,06 

5 Air velocity horizontal along [mm/s] 24,13 24,23 

5 Temperature [C] 0,03 0,03 

5 Relative moisture [%] 0,08 0,08 

6 Air velocity vertical [mm/s] 13,04 13,19 

6 Air velocity horizontal across [mm/s] 10,36 10,56 

6 Air velocity horizontal along [mm/s] 17,98 18,15 

6 Temperature [C] 0,06 0,06 

6 Relative moisture [%] 0,09 0,09 

7 Air velocity vertical [mm/s] 11,18 11,21 

7 Air velocity horizontal across [mm/s] 10,73 10,91 

7 Air velocity horizontal along [mm/s] 22,98 23,05 

7 Temperature [C] 0,08 0,08 

7 Relative moisture [%] 0,09 0,09 

8 Air velocity vertical [mm/s] 11,24 11,56 

8 Air velocity horizontal across [mm/s] 16,85 17,18 

8 Air velocity horizontal along [mm/s] 17,12 17,33 

8 Temperature [C] 0,06 0,06 

8 Relative moisture [%] 0,20 0,20 

9 Air velocity vertical [mm/s] 10,12 10,17 

9 Air velocity horizontal across [mm/s] 7,14 7,62 

9 Air velocity horizontal along [mm/s] 30,29 30,27 

9 Temperature [C] 0,06 0,06 

9 Relative moisture [%] 0,34 0,34 

 

These results show it is possible to predict drying 

conditions in the dryer at GB with a satisfactory first 

foray quality. There were no significant differences for 

the diagnostic RMSEP values between PLS2 and PLS1 

models. This indicates the possibility of establishing an 

effective maintenance schedule for such in-production 

models. 

5 Conclusion 

A feasibility study was carried out to assess the 

possibility of developing prediction models for 

monitoring drying conditions of wood coatings in one of 

Europe’s largest and most modern dryers for exterior 

wood cladding. It was fully possible to perform detailed 

multivariate data models of the complex drying 

conditions and their interrelations using both Principal 

Component Analysis (PCA) and PLS-regression in both 

its PLS1 and PLS2 manifestations.   

Since there were no significant differences for the 

diagnostic prediction performance RMSEP quality 

index between PLS2 and PLS1 models, PLS2 can be 

used to model the dryer at Gausdal Bruvoll, which 

indicates a positive prospect for very efficient data 

model updating and maintenance routine for future in-

production PLS2 models. However, there remains a 

significant amount of industrial calibration work before 

a final evaluation can be performed. 
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