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Abstract
In this research project, acoustic chemometrics was

assessed as a new method for both classification and

prediction of flow rate of five selected gas types. The

gas types were selected to span different densities as

much as possible while at the same time being relatively

safe to use. The five gas types were Argon, Helium,

Carbon dioxide, Nitrogen and Air. The research 

questions were 1) Can measurements of the vibrations 

in a gas control valve in combination with signal 

processing and unsupervised learning be used to

classify the five gases mentioned above? 2) Can the

vibrations in the gas valve in combination with

supervised learning be used to determine the flow 

rate of the five gases? 3) Can a simple low cost piezo 

disk provide signals comparable to that of an 

industrial accelerometer? The results show that it is 

possible to classify the five gas types based on 

principal component analysis with three components. 

The gas flow rate could also be predicted for all 

five gases based on partial least squares regression with 

an average error of 2-5%. The Piezo disk could not be 

used for gas classification, but for prediction of 

gas flow rates it was comparable to the

accelerometer. All the prediction models were 

validated based on independent data.

Keywords: supervised learning, unsupervised learning,

partial least squares regression, classification,

principal component analysis, accelerometer

 

1 Introduction 

Acoustic chemometrics (Halstensen, 2006, 2010; 

Esbensen, 1999; Arvoh, 2012) is a relatively new 

general process analytic approach for on-line 

monitoring of industrial processes. Acoustic 

chemometrics concerns capturing characteristic system 

vibrations generated by e.g. a transportation or 

manufacturing process.  

The vibrations -or acoustic signatures -can easily be 

measured by a non-intrusive sensor (accelerometer). 

Previous research has shown that these acoustic 

signatures carry embedded information about physical 

and chemical parameters, such as composition (oil, fat, 

ammonia, buttermilk, glycol, and ethanol), mixing 

progress, fiber length, flow, density, temperature - as 

well as system state. For extraction and quantification of 

these types of specific analytes and parameters of 

interest, domain transforms (Fast Fourier Transform) 

(Ifeachor & Jervis, 1993) is essential prior to 

multivariate analysis and modelling. 

Unsupervised methods such as Principal Component 

Analysis (PCA) (Esbensen and Swarbrick, 2018) can be 

used to e.g. classify products. Supervised methods such 

as Partial Least Squares (PLS) (Martens & Næs, 1989) 

regression based on empirical input-response data are 

used to extract relevant information and to calibrate 

multivariate regression models. The models can then be 

used either to classify or to predict the parameter of 

interest based on mew independent acoustic spectra. As 

with all multivariate models, the role of proper 

validation is critical (Esbensen and Geladi, 2010). 

 

Advantages of acoustic chemometrics:  

1. clamp on non-intrusive sensor 

2. No process modifications necessary 

3. Several predictions from the same measurement 

 

The fact that almost all processes produce some kind of 

acoustic emission opens up for many potential 

applications, all of which depend on multivariate 

calibration. The only requirement is that the acoustic 

emission must contain relevant information, which can 

be correlated with the parameter(s) of interest. In this 

work, we test the feasibility of acoustic chemometrics to 

both classify gas type and predict gas flow rate. The 

method is demonstrated on five different gas types: 

Argon, Helium, Carbon dioxide, Nitrogen and Air, 

which is a mixture.  

The proposed method cannot be directly compared to 

the accuracy of e.g. Coriolis type flow meters (LaNasa 

& Upp, 2014), but the advantage of this method is that 

it is non-intrusive, inexpensive, easy to implement on 

exiting equipment (no interference with existing 
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equipment is necessary). The industry often prefers non-

invasive or non-intrusive measurement methods since 

parts sticking into the process pipelines can cause 

critical fouling and clogging which is problematic but 

also leads to faulty measurements.  

The main objective in this research project is to test a 

new method for gas flow metering and show that it 

works on different gas types. The second objective is to 

show that the same method also can be used to classify 

the gas type directly from the same raw measurement as 

is used for the flow rate estimation. 

The last objective is to validate the method based on 

independent experimental data to ensure optimal model 

complexity and estimation of the uncertainty of the 

method. 

Very little causal interpretation of the acoustic 

spectra is reported in literature. In a study from 2008 

(Kupyna et al., 2008] tried to explain the physical theory 

behind the flow of liquids through an orifice plate and 

the vibrations that occurred.  The experimental results 

agreed with theory that they found, but it is difficult to 

see how it can be directly used to improve acoustic 

chemometrics. We have not attempted to explain the 

physical theory behind the vibrations that occur in the 

valve from the different flowing gases in this study. 

2 Materials and methods 

The experiments were carried out on an experimental 

gas flow rig in the chemometrics laboratory at 

University of South-Eastern Norway, Porsgrunn, 

Norway. 

2.1 The experimental gas flow rig 

 

Figure 1. Experimental gas flow rig at USN. 

All the experiments with gas flow were carried out in 

the chemometrics laboratory at the University of South-

Eastern Norway, Porsgrunn, Norway (USN). 

The experimental rig used to develop the method is 

shown in Figure 1 above. The rig consists of a 

pressurized gas bottle, a filter, a gas control valve, a 

moisture trap and a gas flow meter. All the elements are 

connected with hoses and pipes, which were pressure-

tested to avoid gas leaks in the system prior to the gas 

flow experiments. The filter is there to avoid getting 

particles into the control valve. These particles can come 

from connecting and disconnecting the hoses and 

clamps at around the gas bottle. 
The gas control valve is a simple rotary gas valve 

used in compressed air systems. A stepper motor is 

connected directly to the valve to be able to control the 

gas flow rate automatically. The control loop was 
implemented in LABVIEW 2017 from National 

Instruments. A large moisture trap/filter normally used 

for spray painting is located right in front of the gas flow 

meter to avoid moisture entering the flowmeter. 

Moisture can damage the gas flow meter or cause false 

readings.  

The gas flow meter Mass-Stream D-6300 from 

BronkhorstTM has a gas flow range up to 200 l/min of 

air. Since we here have other gas types a conversion 

factor was necessary to get the correct flow rates for all 

other gases than air. The accuracy of the flow meter is 

+/- 1 %. 

The gas leaving the gas flow meter was injected into 

the ventilation system and finally disposed to the 

atmosphere. All the elements mentioned above was 

connected with hose with inner diameter = 10mm. On 

the gas control valve shown in Figure 2 the two sensors 

(accelerometer and piezo disk) were glued on to the 

main metal body of the valve. 

 

 

Figure 2. Gas control valve with the stepper motor 

connected from top. 

2.2 Gas types 

Five different gases were selected: air, argon, carbon 

dioxide, nitrogen and helium. These gases were selected 

because we wanted to span the densities as much as 

possible but at the same time, we wanted to use gases, 

which are relatively safe. Air is a mixture containing 

mostly nitrogen (78%) and oxygen (21%) so in the gas 

classification it should behave similar to nitrogen.  

2.3 Acoustic sensors S1 and S2 

S1 is an industrial standard accelerometer with a 

frequency range of 0-40kHz, S2 is  

a simple 0.5mm thick piezo electric element. Figure 3 

shows a picture of the two vibrational sensors S1 and 

S2. 
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Figure 3. Vibrational sensors, S1 (left) is an 

accelerometer from Endevco 7259B, S2 (right) is a simple 

low cost ($1) piezo electric disk with resonant frequency 

4 kHz. 

Two different sensors were mounted in order to test if 

the results from a low cost piezo element (S2) would be 

comparable to the results based on the much more 

expensive accelerometer (S1). 

The measurement systems also consist of a Signal 

Amplifying Module (SAM) as shown in figure 4 and a 

data acquisition system from National Instruments 

(USB-6351) connected to a computer. The SAM unit is 

a special experimental equipment developed and built at 

USN. 

 

Figure 4. Signal Amplifying Module (SAM) 

 
The signal from the accelerometer was amplified 100 

times, while the signal from the piezo disk was only 

amplified 40 times. 

2.4 Signal processing 

The signals from the sensors S1 and S2 were converted 

from time to frequency domain using Fourier 

transformation (Ifeachor & Jervis, 1993) prior to 

analysis and model calibration. The Discrete Fourier 

transform (DFT) can be expressed as 

 

𝑋𝑘 = ∑ 𝑥𝑛𝑒
−𝑖2𝜋𝑘𝑛/𝑁𝑁−1

𝑛=0    𝑘 = 0,… ,𝑁 − 1    (1) 

 

A more efficient implementation of the DFT is the Fast 

Fourier Transform (FFT), which in this work has been 

implemented in LabVIEW 2017 for fast real time 

calculation of the Fourier spectrum. 

Each measurement, which was a time series of 4096 
samples recorded with a sampling frequency of 300 

kHz, were transformed using Fast Fourier Transform. 

The resulting spectrum contains 2048 frequencies.  

2.5 Principal Component Analysis 

Principal component analysis (PCA) is a standard 

multivariate data analysis method (Esbensen and 

Swarbrick, 2018), PCA uses an orthogonal 

transformation to convert a set of observations often 

described by many correlated variables into a few 

linearly uncorrelated latent variables called principal 

components. Principal Component Analysis (PCA) 

which is a so-called unsupervised method can be used 

for classification of observations. It is called 

unsupervised because of the lack of reference data to 

guide the decomposition. The decomposition of a 

multivariate matrix X is shown in equation 2. 

 

X = T PT + E           (2) 

 

The T matrix contains the score vectors, P contains the 

loading vectors and E is the residual.  

In this work, the NIPALS algorithm (Ergon et al., 

2009) was used because of one of its advantages, which 

is that it is possible to calculate only a relevant number 

of components. Principal component analysis can 

alternatively be carried out based on singular value 

decomposition (SVD). The advantage of using SVD is 

that the code is simple, the disadvantage is that all 

possible components always is calculated so if X is large 

(I.e. is made up of a high number of variables), SVD is 

time consuming. NIPALS also works on matrices with 

missing values, in which case SVD will fail.  

2.6 Partial Least Squares Regression 

Partial least squares regression PLS-R was used to 

calibrate multivariate prediction models for flow rate of 

all five gas types. The reference measurements from the 

flow meter in the experimental flow loop was used as 

the reference during calibration.  

Partial Least Squares Regression (PLS-R) is a 

supervised modelling approach which is well explained 

in literature (Martens & Næs, 1989; Ergon et al., 2009) 

thus only a short introduction is given here.  

PLS-R relies on representative training data for two 

variable blocks, often called X and Y respectively. In the 

present study, the X data matrix contains the acoustic 

frequency spectra, and Y is a vector containing the gas 

flow rates from the gas flow meter used as a reference. 

The NIPALS algorithm is the most widely used 

algorithm in PLS regression. In this algorithm, the 

intention is to model both X and y simultaneously, make 

the error as small as possible and at the same time 

extract as much useful information from the X matrix in 

order to describe the y response variable. A simplified 

version of the NIPALS algorithm is presented below 

(Ergon et al., 2009).  
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A is the optimal number of components in the model. 

1. Let 𝑋0 = 𝑋. For a = 1, 2,…, A perform steps 2 to 6 

2. 𝑤𝑎 = 𝑋𝑎−1
𝑇 𝑦 ‖𝑋𝑎−1

𝑇 𝑦‖⁄  (with length 1) 

3. 𝑡𝑎 = 𝑋𝑎−1𝑤𝑎 

4. 𝑞𝑎 = 𝑦𝑇𝑡𝑎(𝑡𝑎
𝑇𝑡𝑎)

−1 

5. 𝑝𝑎 = 𝑋𝑎−1
𝑇 𝑡𝑎(𝑡𝑎

𝑇𝑡𝑎)
−1 

6. Compute the residual 𝑋𝑎 = 𝑋𝑎−1 − 𝑡𝑎𝑝𝑎
𝑇 

 

𝑋 = 𝑇𝑤𝑃
𝑇𝑊𝑊𝑇 + 𝐸              (3) 

𝑦 = 𝑇𝑤𝑞𝑤 + 𝑓                                                           (4) 

 

where the score matrix 𝑇𝑤 = [𝑡1 𝑡2⋯ 𝑡𝐴] is 

orthogonal, loadings matrix 𝑃 = [𝑝1 𝑝2⋯ 𝑝𝐴], 

𝑞𝑤 = [𝑞1 𝑞2⋯ 𝑞𝐴] and the loading weight matrix 

𝑊 = [𝑤1 𝑤2⋯ 𝑤𝐴] 

 

The loading matrix, 𝑃, is calculated as  

𝑃 = 𝑋𝑇𝑇(𝑇𝑇𝑇)−1                                          (5) 

 

The prediction vector for 𝑦 = 𝑋𝑏 + 𝑓 corresponds to: 

𝑏̑ = 𝑊(𝑊𝑇𝑋𝑇𝑋𝑊)−1𝑊𝑇𝑋𝑇𝑦                       (6) 

The response vector 𝑦̑ = 𝑋𝑏̂
 
   (7) 

In evaluating the regression model, the root mean 

squared error of prediction RMSEP offset, slope and 

correlation coefficient are commonly used. The root 

mean squared error of prediction is calculated as:  

RMSEP = √∑ (𝑦̂i,predicted−𝑦i,reference)
2𝑛

𝑖=1

𝑛
             (8) 

3 Experimental 

The gas bottle was connected to a constant pressure 

valve, which were connected to the experimental gas 

flow rig. The constant pressure valve was adjusted to 

four bar. The set point of the gas control valve was 

entered and the gas started to flow. When the gas flow 

rate became stabile after a few seconds, the acoustic 

measurement was started. The gas flow rate was 

simultaneously measured and recorded by the flow 

meter in figure 1.  The gas flow rate levels were chosen 

randomly until all the 21 discrete levels from 1 to 100 

l/min were covered.  The discrete gas flow levels were 

1, 5, 10, 15, 20, 25,…, 100 [l/min]. The experiment was 

repeated following the same strategy as in the first round 

to get independent data for validation of the models. 

This was the experimental procedure followed for all the 

five gas types. 

In order for the gas flow meter to give reliable flow 

rate measurements for the gases different from air, a set 

of conversion factors were necessary to scale the signal 

to the correct level. The conversion factors were 

provided by the manufacturer of the flow meter. The 

conversion factors used can be seen in table 1. 

Table 1. Gas flow rate conversion factors 

Conversion factors for the five gas types measured 

by the flowmeter: 

Air: 1.00 

 Argon (Ar): 2.01 

Carbon dioxide (CO2): 1.20 

Helium (He): 0.24 

Nitrogen (N2): 1.00 

 

Seven replicates of acoustic spectra were recorded for 

each gas and flow rate. Each of these replicates was an 

average of 200 individual spectra. The averaging is 

necessary to reduce white noise and get a precise 

measurement. Each batch of seven replicates took 

approximately 35 seconds to record.  

During the experiments on CO2, a significant amount 

of ice was building up around the valve on the gas bottle. 

This is normally not a big problem but in our case, it was 

problematic because we used hoses to transport the 

gases to the flow rig and these hoses became quite 

fragile at this low temperature. Fortunately, no hoses 

broke during the experiments. 

4  Results and discussion 

4.1 Classification of gas types (S1)  

The score plot t1-t2 in Figure 5 shows that principal 

component 1 describes gas flow rate for all the five gas 

types, the gas flow rate increases from right to left in the 

score plot. The loading vector (Figure 5) for principal 

component 1 which indicates that all the frequencies in 

the acoustic frequency spectra increase with increasing 

gas flow rate since all frequencies have the similar 

loading value. All the results in Figure 5 is based on data 

from the accelerometer only.  
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Figure 5. Upper: Score plot t1-t2, Lower: loading vector 

p1. 

 

Figure 6 shows the classification of the five different 

gas types. The score plot in Figure 6 shows all the five 

gas types with different colors.  

The score plot in Figure 6 above shows that the gas 

groups/clusters are located in a star pattern. It is obvious 

why it has to be exactly like this because “no flow” 

sounds exactly the same for any gas, namely no sound 

at all! The zero flow (0 l/min) is therefore the center of 

the “classification star”. As expected, the nitrogen (N2) 

group overlaps significantly with the cluster for air 

because air contains 78% of nitrogen. 

The Loadings for the first two components shows that 

there are relevant information in almost all the 

frequencies in the spectra.  

The explained variance plot shows that most of the 

variance in the data is caused by variation in airflow rate 

as PC-1 explains 78% of the variance. PC-2 and PC-3, 

which is used for classification of the gases, only 

explains 8% and 4% respectively.  

The PCA classification model was based on data 

from two independent experiments separated in time. 

An alternative strategy would be to determine the PCA 

classification model based on one of the experiments 

and used the other one for testing. Based on the results 

shown in the score plot in Figure 6 we have here only 
shown that classification of these five gases based on 

vibration analysis is promising. Further validation of the 

concept is needed to verify reliability over time. 

 

 

 

 

Figure 6. Classification of gases based on the 

accelerometer data, Upper: Score plot t2-t3, Middle: 

Loading vectors p2 and p3. Lower: Explained variance. 

4.2 Classification of gas types (S2) 

From the analysis of the data from the low cost piezo 

disk it became clear that it was not possible to 

completely separate and thus classify the five gases. 

Figure 7 shows the score plot t2-t3 of the piezo disk data, 

which is directly comparable to the score plot in figure 

6 representing the accelerometer. As can be seen in 

figure 7 the data is more spread (noisy) leading to 
overlap between gas types. The PCA classification 

model was also here based on data from two 
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independent experiments separated in time as described 

in Section 4.1 

 
Figure 7. Classification of gases based on the piezo 

disk data, Score plot t2-t3.  

4.3 Estimation of gas flow rate 

 

 

 

Figure 8. PLS regression model for prediction of gas 

flow rate of Argon, 2 components was optimal and no 

outliers were deleted. 

Five PLS-R models were calibrated for flow rate of the 

five different gas types using the acoustic data (spectra) 

as the independent X-matrix and the reference Y-vector 

was the flow rates from the gas flow meter.  

The prediction performance of the five models were 

similar with comparable RMSEP values. Only the full 

model result for Argon is shown in Figure 8 while the 

results for all the 5 gas types has been summarized in 

table 2 for comparison. The model for argon flow rate in 

figure 8 is based on both sensors (Accelerometer and 

Piezo disk) combined. 

Table 2 below shows a comparison of all the models 

for gas flowrate of all five gases, and all combinations 

of sensors. 

 

Table 2. Comparison of gas flow rate models for Air, 

N2, CO2, He and Argon. The lowest RMSEP values of 

the models based on single sensors are indicated with 

bold numbers. 
 

Gas 

type 

Both sensors 

(4096 variables) 

Accelerometer 

(2048 variables) 

Piezo disk 

(2048 variables) 

RMS

EC 

RMS

EP 

#Co

mp. 

RMS

EC 

RMS

EP 

#Co

mp. 

RMS

EC 

RMS

EP 

#Co

mp. 

Arg

on 

3.158

3 

3.262

3 

2 3.554

5 

3.812

4 

2 3.527

5 
3.402

6 

2 

Air 2.810

9 

4.035

0 

2 3.118

4 
4.179

4 

2 3.068

4 

4.279

2 

2 

CO2 3.364

1 

3.364

1 

3 3.827

2 

5.010

7 

3 3.871

3 
4.600

2 

3 

He 2.287
0 

2.589
6 

4 1.690
9 

2.051

4 

3 4.885
6 

4.912
5 

4 

N2 1.842
0 

3.574
4 

2 2.336
8 

3.687
1 

2 1.704
9 

3.610

6 

2 

 

A comparison of the RMSEP values of the models based 

on single sensors shows that the sensors performs very 

similar and both can be used for prediction of gas flow 

rate. However, if classification of gas type is of interest 

it is only the accelerometer, which can be used. The 

loading plots in Figure 5 and 6 and the regression 

coefficients in Figure 8 shows that there is information 

in all frequencies in the acoustic spectra, an attempt to 

use variable selection where some of the variables are 

omitted in the model will fail because of this. In order to 

improve the classification or prediction of gas flowrate, 

the most effective method is to use moving average 

either in the frequency direction or in the time direction. 

Filtering in the time direction will often result in a lower 

RMSEP but since we introduce a low-pass filter, the 

model will not be able to detect rapid changes of the 

parameter of interest. 

5 Conclusion 

A new method for non-intrusive gas classification and 

flow rate estimation is proposed. The research 

objectives was 1) assess acoustic chemometrics 

potential to classify 5 selected gases, 2) predict the flow 

rate of each gas in the range 0-100 l/min and 3) compare 

results from a standard accelerometer and a simple low 

cost piezo disk. The results in section 4 shows a 

successful classification of the gas types based on PCA 

with three components on the measurements from the 
accelerometer. The results also show that it is possible 

to predict gas flowrate based on vibrations in the gas 

SIMS 61

DOI: 10.3384/ecp20176451 Proceedings of SIMS 2020
Virtual, Finland, 22-24 September 2020

456



flow rate valve. The RMSEP values shows an average 

error between 2 and 5% for the gas flow rate models 

when tested on independent data. From the comparison 

of the low cost piezo disk and the accelerometer, it was 

clear that the piezo disk could not be used for gas 

classification, but for prediction of gas flow rates it was 

comparable to the accelerometer. 
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