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Abstract
The aim of this paper is to estimate the parameters of

the model of Pressure Peaking Phenomena (PPP). This

project focuses on the investigation of the overpressures

arising from the ignited hydrogen releases in 14.9m3

enclosure (explosive chamber) through a 4mm nozzle.

The various ventilation areas and mass flow rates were

applied in 31 tests. The controlled variables for

experiments are mass flow rate (MFR, g/s), ventilation

area (Av, m2) and time of hydrogen releases (t, s). The

Bayesian approach was implemented in the parameter

estimation using Markov chain Monte Carlo method for

simulations. The discharge coefficient and heat loss

coefficient has been analyzed and gave by posterior

distribution.

Keywords: pressure peaking phenomena, hydrogen

safety, Bayesian analysis, parameter estimation,

MCMC.

1 Introduction

Hydrogen releases in confined spaces are bringing new

hazards into underground transportation systems.

Unexpected hydrogen releases in confined spaces can

result in dynamic overpressures with characteristic

peaks. The phenomenon called pressure peak

phenomena is distinct for hydrogen and occurs while

introducing gas with lower density than the gas inside

the enclosure (Brennan and Molkov, 2018). The

characteristic transient pressure can be observed during

releases with a high molar flow in combination with a

relatively low ventilation area.

In a study by Makarov et al. (2018) a model for

hydrogen jet fires from the TPRD (Thermal activated

Pressure Relief Devices) was presented, which was

demonstrated to be consistent with the experimental

observations on in ~1m3 enclosure. The model predicted

much higher overpressures compared to the unignited

releases. The model consists of the volumetric mass

balance of the gasses in the enclosure during a

combustion process. They applied a perfect mix

assumption and included adiabatic temperature in the

calculations. The results of their simulation for garage-

like enclosures showed the risk of enclosure collapse in

a few seconds. The parameters used for the simulation

were typical TPRD diameter and low ventilation area

(commonly used in UK and France). Further numerical 

study of pressure peaking from ignited hydrogen 

releases was performed by Hussein et al. (2018). Their 

simulations were performed for small scale enclosures 

(experimental result from 1m3 enclosure) and real scale 

(garage-like) for the common use of TPRD diameters. 

The model used ANSYS ICEM CFD (Computational 

Fluid Dynamics) to generate geometries for both studied 

cases. The RANS (Reynolds-Average Navier-Stokes) 

conservation equations were used for solving energy, 

mass, species and momentum, turbulent model, 

radiation, and combustion model. The EDC  (Eddy 

Dissipation Concept) model was used to solve the 

combustion process and DO (Discrete Oridantes) model 

to include the radiation process. Results demonstrated 

the relation between vent area and release rate. The big 

impact of heat transfer mechanisms in the prediction of 

the pressure peaking phenomenon was acknowledged. It 

was concluded that the current TPRD diameters may 

result in a significantly dangerous situation in under-

ventilated enclosures. The heat transfer mechanisms 

(radiation and conduction) has been investigated 

(Hussein et al., 2018). The assumption of adiabatic walls 

showed high over predictions compared to simulations 

where both radiation and conduction were included. The 

heat transfer has been computationally demonstrated but 

due to the small scale of experiments (2 s experimental 

run) couldn’t be physically observed. The heat transfer 

in the system is found to be important and needs further 

investigation. 

In this study, the model of ignited hydrogen releases 

developed at USN (University of South-Easter Norway) 

is presented for the first time. It is based on the problem 

approach presented by Brennan et al. (2010). The model 

was validated against large scale experiments in the 

explosion chamber, allowing to observe high 

overpressures (over 45 kPa). In this study, we use the 

Bayesian parameter estimation approach to estimate the 

model parameters, the discharge coefficient and the heat 

loss. The Bayesian method combines the information on 

a discrepancy between the model and the measurements 

given a set of parameter values (described by the 

likelihood) and the information available in the 

literature (described by the prior) through use of the 

Bayes rule to determine the probable values of the 

unknown parameters. An important distinction between 

SIMS 61SIMS 61SIMS 61

DOI: 10.3384/ecp20176443 Proceedings of SIMS 2020
Virtual, Finland, 22-24 September 2020

443



the Bayesian method and other classical methods is that 

it can explicitly and consistently incorporates all the 

existing knowledge about the unknown parameters. The 

results of each parameter consistent with the 

measurements are represented by a posterior 

distribution. We use a Markov Chain Monte Carlo 

(MCMC) method to generate samples from the 

posterior, which can be used for estimation of the 

unknown parameters. In recent years, the popularity of 

the MCMC methods has been on the rise (Vrugt, 2016). 

The prior distribution is chosen based on information 

found in the literature in order to impose bounds on the 

parameter space. The prior and posterior densities have 

been graphically presented as a normal distribution 

function as in studies on combustion kinetics models 

(Wang et al., 2020).  

The main goal is to create a probability density 

function (pdf) for parameters giving the most accurate 

model.  

Using Bayesian analysis allows us to understand the 

parameters' influence on pressure dynamics in the 

system hence improve the model. The pressure peaking 

model is designated to be an engineering tool for safety 

engineers. The accurate parameter estimation plays a 

significant role in its development. 

The investigation of occurring overpressures from 

ignited hydrogen releases in confined spaces is part of 

pre-normative research for the safety of hydrogen fuel 

vehicles and transport through tunnels and similar 

confined spaces (Hy-Tunnel CS). 

2 Case set up and methodology 

2.1 Experimental setup and materials 

All experiments were performed in a steel explosion 

with a total volume of 14.9 m3. The explosion chamber’s 

walls in total have five vents of 80 mm diameter each 

(0.005027m2). The vent in the middle of the front wall 

was used for the hydrogen and propane pipes. Three of 

the vents were used to vary the passive ventilation area. 

The flanges were used to fully close/open the vents with 

gasket ensuring no leakage. The specifics of the releases 

were obtained with hydrogen mass flow through a 

stainless pipe outlet located in the center of the 

chamber’s floor to vertically discharge hydrogen jets 

fires. 

The Coriolis mass flow meter and the pneumatic 

valve were mounted to measure and control hydrogen 

releases. Oscilloscope Sigma has recorded pressure and 

mass flow rate from Coriolis mass flow. The complete 

overpressure development was measured with Kulite 

pressure transducer XTM - 190-50A. Oscilloscope 

Gen3i recorded the overpressure constantly with 

parallel measurement initiated by the voltage signal 

(with 25 ks/s). In the table below are listed the 

uncertainties of measurement. 

Table 2. Standard deviations of instruments 

Pressure sensor ±1% FSO BFSL 

250 point (0.025 sec) filter 

Mass flow sensor ±0.5% of a flow rate 

Thermocouples type K ±0.75% 

2.1.1 Data set 

The experiments were designed for three different 

ventilation areas and with a variety of mass flow rates 

The purpose of those experiments was to validate the 

model of PPP. To observe overpressure the mass flow 

rate of discharged hydrogen into an enclosure has to be 

relatively high while the ventilation area has to be 

relatively small (Makarov et al., 2018). The chosen 

combination of vent area and mass flow rates is based 

on previous unignited experiments (Lach, 2019) and 

studies on PPP (Hussein et al., 2018). The pressure peak 

phenomenon for hydrogen jet fires in the 14.9m3 

enclosure was successfully observed during all 31 

experiments. Experiment 11 described in Table 1  will 

be used to present methods of the Bayesian approach for 

parameter estimation.  

The measured pressure of experiment 11 is presented 

in Figure 1. The uncertainty of the Kulite sensor together 

with the sampling time, result in uncertainty -/+ 0.22 

kPa. 

Table 1 Experimental results: H2 releases through 4mm nozzle in 14.9m3 enclosure with ventilation area: 1 open 

vent=0.0055m2, 2 vent open= 0,0109m2, 3 vents open= 0.0164m2. 

Setup Measured 

Exp 
nr 

T0 in enclosure 
[K] 

H2 release 
time [s] 

Open 
vent 

Mass flow rate 
[g/s] 

Experimental overpressure 
(max) [kPa] 

Experimental underpressure 
(max) [kPa] 

11 280 7.50 3 8.63 14.70 -3.30 

Figure 1. Exp 11; Overpressure for MFR 8.63 g/s with 

3 open vent with total vent area 0.0164 m2. Measurement 

uncertainty 0.22kPa. 
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2.2 Model of Pressure Peaking Phenomena-

governing equation 

The model of pressure dynamics in the enclosure during 

ignited hydrogen releases (jet fires) is presented. In the 

calculations, the stoichiometric hydrogen combustion 

was applied where one mole of hydrogen requires 0.5 

moles of oxygen: 𝐻2+0.5(𝑂2+3.76𝑁2)↔𝐻2𝑂+1.88𝑁2. 

The system of conservation equations described in this 

chapter provides a solution for the PPP model 

explaining mass balance and temperature based on the 

internal energy in the enclosure.  

The mass balance for each species in the enclosure is 

described with the system of equations (1)-(6). The 

number of moles in the enclosure 𝑛𝑡𝑜𝑡 is a sum of the 

number of moles of each species in the enclosure 

𝑛𝑡𝑜𝑡=Σ𝑛𝑖 : 

 
𝑑𝑛𝐻2

𝑑𝑡
= 𝑛̇𝑖𝑛𝐻2

− 𝑛̇𝑜𝑢𝑡𝐻2
+ 𝑛̇𝑟𝑥𝐻2

  (1) 
𝑑𝑛𝑂2

𝑑𝑡
= 𝑛̇𝑖𝑛𝑂2

− 𝑛̇𝑜𝑢𝑡𝑂2
+ 𝑛̇𝑟𝑥𝑂2

   (2) 
𝑑𝑛𝑁2

𝑑𝑡
= 𝑛̇𝑖𝑛𝑁2

− 𝑛̇𝑜𝑢𝑡𝑁2
+ 𝑛̇𝑟𝑥𝑁2

   (3) 
𝑑𝑛𝐻2𝑂

𝑑𝑡
= 𝑛̇𝑖𝑛𝐻2𝑂 − 𝑛̇𝑜𝑢𝑡𝐻2𝑂 + 𝑛̇𝑟𝑥𝐻2𝑂                (4) 

 

 

Where 𝑛̇𝑖𝑛,𝐻2
= 𝑚̇𝑖𝑛/𝑀𝐻2

 (hydrogen mass flow 𝑚̇𝑖𝑛 

was measured with coriolis mass flow meter), given the 

initial conditions (at t=0) 𝑛𝐻2.0 = 0. 𝑛𝑂2.0 = 0.21 ⋅

𝑛𝑡𝑜𝑡.0.  𝑛𝑁2.0 = 0.79 ⋅ 𝑛𝑡𝑜𝑡.0. 𝑛𝐻2𝑂.0 = 0 and 𝑛𝑡𝑜𝑡.0 =

𝑝0 ⋅
𝑉

𝑅𝑇0
 . If the pressure inside the enclosure will be 

lower than ambient pressure ∆p<0.001 that means the 

hydrogen mass flow into the enclosure was closed and 

𝑛̇𝑖𝑛,𝐻2
= 0. Then the air from outside the chamber starts 

to flow into the enclosure through the vent area, means 

the 𝑛̇𝑜𝑢𝑡,𝑖 = 0 and: 

𝑛𝑖𝑛, =
𝐶𝑖𝑛∙𝐴

𝑀𝑎𝑖𝑟
√2 ∙ ∆𝑝 ∙ 𝜌𝑎𝑖𝑟    (5) 

Where 𝑀𝑎𝑖𝑟 is the molecular mass of air and 𝜌𝑎𝑖𝑟 is 

the density of air. The 𝐶𝑖𝑛 and 𝐴 is the discharge 

coefficient and the vent area, respectively. Using 

equation (5) the 𝑛̇𝑖𝑛,𝑖 can be calculated:  𝑛̇𝑖𝑛,𝑂2
= 0.21 ∙

𝑛̇𝑖𝑛  and  𝑛̇𝑖𝑛,𝑁2
= 0.79 ∙ 𝑛̇𝑖𝑛  given the assumption that  

𝑛̇𝑖𝑛,𝐻2𝑂 = 0. 

By balancing the combustion reaction equation, to 

burn all hydrogen  𝑛̇𝑟𝑥,𝐻2
= −𝑛̇𝑖𝑛,𝐻2

 the oxygen needed 

will be: 𝑛̇𝑟𝑥,𝑂2
= 0.5 ∙ 𝑛̇𝑟𝑥,𝐻2

. The produced water vapor 

then will be   𝑛̇𝑟𝑥,𝐻2𝑂 = −𝑛̇𝑖𝑛,𝐻2
, and 𝑛̇𝑟𝑥,𝑁2

= 0.  

Equation (6) based on the steady-state in a 

compressible energy equation (Bernoulli equation)  

gives the molar flow out 𝑛𝑜𝑢𝑡,𝑡𝑜𝑡,  which contains all the 

species in the enclosure from the initial stage and 

combustion products (no condensation of the water on 

the walls inside the chamber): 

𝑛𝑜𝑢𝑡,𝑡𝑜𝑡 = 𝐶 ∙ 𝐴√
2∙∆𝑝∙𝑛𝑡𝑜𝑡

𝑉∙𝑀𝑒𝑛
    (6) 

Where 𝑛𝑡𝑜𝑡 = ∑ 𝑛𝑖𝑖  is the number of moles in the 

enclosure, the molecular mass in the enclosure is then 

𝑀𝑒𝑛 = ∑ 𝑋𝑖𝑀𝑖𝑖  where 𝑋𝑖 = 𝑛𝑖/𝑛𝑡𝑜𝑡 and 𝑛̇𝑜𝑢𝑡,𝑖 = 𝑋𝑖 ∙
𝑛𝑜𝑢𝑡,𝑡𝑜𝑡 can be calculated. The C is the discharge 

coefficient and A is the ventilation area.  

To calculate the pressure in the enclosure (12) the 

temperature has to be solved first. The internal energy 𝑈 

for the system is equal to: 
𝑑𝑈

𝑑𝑡
= 𝐻̇𝑖𝑛 − 𝐻̇𝑜𝑢𝑡 + 𝑄̇𝑟𝑥 − 𝑄̇𝑙𝑜𝑠𝑠   (7) 

And 
𝑑𝑈

𝑑𝑡
=

𝑑𝑛𝑈̂

𝑑𝑡
      (8) 

With the assumption of specific internal energy 𝑈̂: 

 𝑈̂𝑖 = 𝑈̂𝑟𝑒𝑓,𝑖 + ∫ 𝑐𝑣,𝑖𝑑𝑡
𝑇

𝑇𝑟𝑒𝑓
    (9) 

Where  𝑈̂𝑟𝑒𝑓,𝑖 = 0 at 𝑇𝑟𝑒𝑓 = 298.15K and 𝑐𝑣,𝑖  is the 

molar heat capacity in a constant volume. Changing the 

internal energy to the temperature will result in a 

governing equation of temperature in the enclosure 𝑇𝑒𝑛: 
𝑑𝑇𝑒𝑛

𝑑𝑡
=

1

∑ 𝑛𝑖𝑐𝑣,𝑖𝑖
(𝐻̇𝑖𝑛 − 𝐻̇𝑜𝑢𝑡 + 𝑄̇𝑟𝑥 − 𝑄̇𝑙𝑜𝑠𝑠 − (𝑇 −

𝑇𝑟𝑒𝑓) ∙ ∑ 𝑐𝑣,𝑖
𝑑𝑛𝑖

𝑑𝑡𝑖 )     (10) 

The 𝐻̇𝑖𝑛 = ∑ 𝑛̇𝑖 𝑖𝑛.𝑖
𝐻̂𝑖 is the sum of enthalpies of each 

species at 𝑇 = 𝑇𝑖𝑛. Using the same analogy the enthalpy 

of the system at 𝑇 = 𝑇𝑒𝑛 is the sum of enthalpies: 

𝐻̇𝑜𝑢𝑡 = ∑ 𝑛𝑜𝑢𝑡.𝑖 ∙ 𝐻̂𝑖 𝑖
.  

The 𝑐𝑣,𝑖 was calculated by reducing the heat capacity 

at constant pressure by the universal gas constant 𝑐𝑣,𝑖 =

𝑐𝑝,𝑖 − 𝑅. The 𝑐𝑝,𝑖 𝐻̇𝑖𝑛,𝑖 and 𝐻̇𝑜𝑢𝑡,𝑖 where calculated with 

NASA polynomials (Mcbride et al., 1993) which 

includes thermodynamic data coefficients and enthalpy 

of formation 𝐻̂𝑓,𝑖. 

The 𝑄̇𝑟𝑥 is the heat of formation. Since the water 

vapor is the only product 𝑄̇𝑟𝑥 = 𝑄̇𝑟𝑥,𝐻2𝑂 = 𝑛̇𝑟𝑥𝐻2𝑂 ∙

(−∆𝐻̂𝑓𝐻2𝑂
) where the 𝐻̂𝑓𝐻2𝑂

 is the enthalpy of formation 

of water vapor. 

The 𝑄̇𝑙𝑜𝑠𝑠 is the heat loss calculated with the major 

assumption of a simple heat transfer with no 

condensation of water:  𝑄̇𝑙𝑜𝑠𝑠 = ℎ𝑙𝑜𝑠𝑠 ∙ 𝐴𝑤𝑎𝑙𝑙 ∙ (𝑇𝑒𝑛 −
𝑇𝑤𝑎𝑙𝑙) where 𝐴𝑤𝑎𝑙𝑙 is the surface area inside the 

enclosure and ℎ𝑙𝑜𝑠𝑠 is the heat transfer coefficient. When 

the pressure inside the enclosure will be lower than 

ambient pressure ∆𝑝 < 0.001 the cold air is entering 

into enclosure and heat transfer coefficient is assumed 

to be  ℎ𝑙𝑜𝑠𝑠,2 = 0.5 ∗ ℎ𝑙𝑜𝑠𝑠. 

The change of the number of moles in enclosure 

causes temperature change, expressed in equation (10) 

with ((𝑇 − 𝑇𝑟𝑒𝑓) ∙ ∑ 𝑐𝑣,𝑖
𝑑𝑛𝑖

𝑑𝑡𝑖 ). The temperature of the 

wall 𝑇𝑤𝑎𝑙𝑙, was calculated with the major assumption 

that the whole wall is one thermal mass with the same 

temperature inside (i.e. no temperature gradient in the 

wall): 
𝑑𝑇𝑤𝑎𝑙𝑙

𝑑𝑡
=

𝑄̇𝑙𝑜𝑠𝑠

𝑚𝑤𝑎𝑙𝑙∙𝐶𝑠𝑡𝑒𝑒𝑙
     (11) 
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Where 𝑚𝑤𝑎𝑙𝑙 is the mass of walls and 𝐶𝑠𝑡𝑒𝑒𝑙 is the 

heat capacity of the wall. 

Solving the PPP model with conservation equations 

(1), (2), (3), (4), (10), (11) then allows to calculating 

pressure inside the enclosure with the ideal gas law (12): 

𝑝𝑒𝑛 =
𝑛𝑡𝑜𝑡∙𝑅∙𝑇𝑒𝑛

𝑉
     (12) 

2.3 Bayesian framework 

A Bayesian approach with Monte Carlo simulation was 

used in estimating the parameters: the discharge 

coefficient, 𝐶, and the heat transfer coefficient, ℎ𝑙𝑜𝑠𝑠. 

The purpose of using Bayesian inference is to obtain 

new recognition about the parameters 𝜃. Whereas 

standard optimization techniques would estimate the 

optimal value for these parameters, Bayesian simulation 

instead estimates a distribution of probable values 

(based on including observed data and prior 

knowledge). Using a Bayesian approach makes sense 

given the uncertainties inherent in experiments and 

measurements. 

The relationship between 𝜃 = [𝐶, ℎ𝑙𝑜𝑠𝑠] and the 

measurement data 𝑑 is given according to Bayes’ 

theorem, equation (13).  𝐶 and ℎ𝑙𝑜𝑠𝑠 are assumed to be 

independent. 

 

𝑝𝑝𝑜𝑠𝑡(𝜃|𝑑, 𝑀, 𝐼) =
ℒ(𝑑|𝜃, 𝑀, 𝐼)𝑝𝑝𝑟𝑖𝑜𝑟(𝜃|𝑀, 𝐼)

∫ ℒ(𝑑|𝜃, 𝑀, 𝐼)𝑝𝑝𝑟𝑖𝑜𝑟(𝜃|𝑀, 𝐼)𝑑𝜃
  (13) 

 

                   ∝ ℒ(𝑑|𝜃, 𝑀, 𝐼)𝑝𝑝𝑟𝑖𝑜𝑟(𝜃|𝑀, 𝐼)  

 

Here 𝑝𝑝𝑜𝑠𝑡(𝜃|𝑑, 𝑀, 𝐼) is the posterior probability for 

parameters 𝜃 given the measurement data 𝑑, 𝑀 

representing the previously described model, and 𝐼 

represents other unspecified information given in this 

paper, such as the experimental setup. The 

𝑝𝑝𝑜𝑠𝑡(𝜃|𝑑, 𝑀, 𝐼) expresses the updated knowledge of 

the 𝜃 given the 𝑑, 𝑀, 𝐼. Further, 𝑝𝑝𝑟𝑖𝑜𝑟(𝜃|𝑀, 𝐼) 

represents the prior probability distribution for 

parameters 𝜃 given the model 𝑀 and the information 𝐼- 

the initial belief about the 𝜃. Preliminary testing 

suggested that the value of ℎ𝑙𝑜𝑠𝑠 was between 20 and 40, 

while the value of 𝐶 was between 0.6 and 1. The prior 

distributions used are further detailed in the next 

subchapter. Finally, ℒ(𝑑|𝜃, 𝑀, 𝐼) represents the 

likelihood (probability) of seeing the measurement data 

𝑑 given the parameters 𝜃, the model 𝑀, and other 

information 𝐼. The Bayesian calculation will confront 

the simulation results of the earlier described model as a 

function of 𝜃 and 𝑑, 𝑀, 𝐼 to gather the pdf (probability 

density function) of the 𝜃 for the observed data. 

Assuming the measurement uncertainties are 

normally distributed, the likelihood is given by the 

Gaussian function (Daly et al., 1995). As experiments 

consist of multiple measurements, this gives us equation 

(14), where 𝑑𝑖 (experimental overpressure) and 𝑚𝑖 

(simulated overpressures) represent measurement data 

and model data at index 𝑖 (step), respectively. The 

sigma, 𝜎 is the standard deviation of the measurement 

uncertainty (constant 𝜎, Table 2).  

ℒ(𝑑|𝜃, 𝑀, 𝐼) = ∏
1

√2𝜋𝜎2
𝑛
𝑖=1 exp (−

(𝑑𝑖−𝑚𝑖)2

2𝜎2 ) (14) 

Having the priors and likelihood allows the posterior 

pdf to be estimated through Monte Carlo simulation. 

This was done using the standard Metropolis Markov 

Chain Monte Carlo algorithm, which is further detailed 

in algorithm 1.  

 
Algorithm 1 

The Metropolis algorithm (adapted from (Kruschke, 2015) 

1. Given: data 𝑑; prior distribution  𝑝𝑝𝑟𝑖𝑜𝑟(𝜃|𝑀, 𝐼); 

likelihood function ℒ(𝑑|𝜃, 𝑀, 𝐼); step standard deviation 

𝜎; number of steps 𝑇  

2. Initialize 𝜃0 

3. For 𝑖 = 1 to 𝑇: 

4. Sample 𝜃′ ~ 𝒩(𝜃𝑖−1, 𝜎2) 

5. Sample 𝑢 ~ 𝒰(0,1) 

6. 𝑝𝑚𝑜𝑣𝑒 = min (1,
ℒ(𝑑|𝜃′, 𝑀, 𝐼)𝑝𝑝𝑟𝑖𝑜𝑟(𝜃′|𝑀, 𝐼)

ℒ(𝑑|𝜃𝑖−1, 𝑀, 𝐼)𝑝𝑝𝑟𝑖𝑜𝑟(𝜃𝑖−1|𝑀, 𝐼)
) 

7. If 𝑝𝑚𝑜𝑣𝑒 ≥ 𝑢:  𝜃𝑖 = 𝜃′; else:  𝜃𝑖 = 𝜃𝑖−1 

 

This is a sampling algorithm where samples 

producing a higher probability than the current sample 

is always accepted, while samples producing a lower 

probability than the current sample is sometimes 

accepted, depending on a randomly sampled value. This 

process is then repeated for a limited number of steps. 

However, with high numbers of measurements, the 

likelihood has a tendency to vanish, as many values 

between 0 and 1 are multiplied. Using the natural 

logarithm is a natural way of overcoming this. Using the 

natural logarithm changes steps 6 and 7 of algorithm 1 

in the following way. The fraction in step 6 is changed 

as shown in equation (15). Here ℓ refers to the 

loglikelihood, and 𝓅𝑝𝑟𝑖𝑜𝑟 refers to the logarithm of the 

prior. Due to a high number of steps (100000) needed to 

describe our physical event the Gaussian distributions 

were assumed for the loglikelihood and the logprior. 

Then ℓ and 𝓅𝑝𝑟𝑖𝑜𝑟 can be calculated as shown in 

equation (16) and (17). In equation (16), as in equation 

(14), 𝑑𝑖 and 𝑚𝑖 represent measurement data and model 

data at index 𝑖, respectively, and 𝜎 is the standard 

deviation of the measurement uncertainty. In equation 

(17) 𝜃𝑗 represents the 𝑗-th parameter in 𝜃, and 𝜇𝑗 and 𝜎𝑗 

represent the expected value and standard deviation, 

respectively, for the prior for this parameter. Equation 

(17) is only valid if the parameters of 𝜃 are independent. 

The final change that needs to be made is to alter step 7 

to compare 𝑝𝑚𝑜𝑣𝑒 to the value of ln (𝑢) instead of u. 

  ln (
ℒ(𝑑|𝜃′, 𝑀, 𝐼)𝑝𝑝𝑟𝑖𝑜𝑟

(𝜃′|𝑀, 𝐼)

ℒ(𝑑|𝜃𝑖−1, 𝑀, 𝐼)𝑝𝑝𝑟𝑖𝑜𝑟
(𝜃𝑖−1|𝑀, 𝐼)

) =  

(15) 
  ℓ(𝑑|𝜃′ , 𝑀, 𝐼) + 𝓅𝑝𝑟𝑖𝑜𝑟(𝜃′|𝑀, 𝐼)  

  −ℓ(𝑑|𝜃𝑖−1, 𝑀, 𝐼) − 𝓅𝑝𝑟𝑖𝑜𝑟(𝜃𝑖−1|𝑀, 𝐼)  
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  ℓ(𝑑|𝜃, 𝑀, 𝐼) = 𝑘 + ∑ −
(𝑑𝑖−𝑚𝑖)2

2𝜎2
𝑛
𝑖=1   (16) 

  𝓅𝑝𝑟𝑖𝑜𝑟(𝜃𝑖−1|𝑀, 𝐼) = 𝑙 + ∑ −
(𝜃𝑗−𝜇𝑗)

2

2𝜎𝑗
2

𝑚
𝑗=1   (17) 

2.3.1 MCMC Setup 

There are parameters that must be set for the MCMC 

algorithm, including the number of steps 𝑇, the standard 

deviation of the step 𝜎2. Additionally, the prior 

distributions for 𝜃 must be specified. Based on this the 

MCMC was run with the parameters and priors shown 

in Table 3. The prior probability distributions for 𝐶 and 

ℎ𝑙𝑜𝑠𝑠 are also shown in Figure 2. 

Table 3. MCMC parameters and prior distributions 

𝑇 100000 
𝜎𝐶 0.01 

𝜎ℎ𝑙𝑜𝑠𝑠
 0.1 

𝑝𝑝𝑟𝑖𝑜𝑟(𝜃|𝑀, 𝐼) 𝑝𝑝𝑟𝑖𝑜𝑟(𝐶|𝑀, 𝐼) ∙ 𝑝𝑝𝑟𝑖𝑜𝑟(ℎ𝑙𝑜𝑠𝑠|𝑀, 𝐼) 

𝑝𝑝𝑟𝑖𝑜𝑟(𝐶|𝑀, 𝐼) 𝒩(0.8, 0.05) 

𝑝𝑝𝑟𝑖𝑜𝑟(ℎ𝑙𝑜𝑠𝑠|𝑀, 𝐼) 𝒩(30, 5) 

 

Figure 2. The prior probability distributions for A: 

discharge coefficient 𝑪 and B: heat loss coefficient ℎ𝑙𝑜𝑠𝑠. 

Additionally, some lead/lag compensation was 
implemented due to a time offset between the 

experimental and simulated data of approximately 4000 

time-steps, consistent between experiments. It resulted 

in a significant difference during the rise and fall of the 

pressure response in the experiments.  

The model was solved using solve nonstiff 

differential equations- medium order method ode45 

(MathWorks, 2020), with a maximum time step of 0.5 s. 

2.3.2 Evaluation of MCMC representativeness  

The representativeness and performance of the MCMC 

chains that were run were evaluated as described by 

Kruschke (2015). In this subchapter “the chains” refers 

to four chains run on experiment 11. 

A visual inspection of the chains’ trajectory shows 

that after a burn-in period, all the chains had converged 

to the same area. The first 3000 steps of each chain were 

then removed, considered to be part of burn-in. With 

these steps removed the chains were seen to overlap and 

mix well, and distinguishing the different chains from 

one another was basically impossible. This indicates 

that none of the chains are stuck with all the chains 

sampling from the same region. The convergence of 

chains with the starting position given by the X marker 

is presented in Figure 3. 

 

Figure 3. Convergence of 4 chains run in MCMC; exp 11. 

The plots of marginal distributions were then created 

for the sampled parameter values for each chain, shown 

in Figure 4 and Figure 5. These density plots show high 

overlap, though with some difference in the peaks. 

Some difference in the density plot is to be expected, 

due to the finite number of samples drawn. The overlap 

between chains suggests the chains sample 

representative values from the posterior distribution. 

 

A

. 

B 
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Figure 4. Density plot for parameter 𝑪 for chain 1 

through 4 for experiment 11. 

 

Figure 5. Density plot for parameter 𝒉𝒍𝒐𝒔𝒔 for chain 1 

through 4 for experiment 11. 

This evaluation of the MCMC gives us confidence in 

the results produced by the simulation. The evaluation 

shows no indication of poor representativeness nor low 

accuracy. 

2.3.3 Posterior predictive check 

If our model is adequate, then replication of the current 

experiment should generate data that are similar to the 

predictions made by the model. Let 𝑦𝑡 = 𝑦(𝑡; 𝜃) denote 

the predicted pressure given 𝜃 = (𝐶, ℎ). We are 

interested in 𝑝(𝑦𝑡|𝐷, 𝑚, 𝐼), where D and m denote the 

experimental data from the previous run and the model 

output (section 2.2), respectively. It follows from the 

marginalization and the product rules that 

𝑝(𝑦𝑡|𝐷, 𝑚, 𝐼) = ∫ 𝑝(𝑦𝑡 , 𝜃|𝐷, 𝑚, 𝐼) = 
Ω

                   

∫ 𝑝(𝑦𝑡|𝐷, 𝜃, 𝑚, 𝐼)𝑝(𝜃|𝐷, 𝑚, 𝐼)𝑑𝜃  
Ω

    (18) 

In case we know m and 𝜃, it is reasonable to assume that 

previously acquired data and the prediction 𝑦𝑡 are 

conditionally independent. This means that 

𝑝(𝑦𝑡|𝐷, 𝜃, 𝑚, 𝐼) = 𝑝(𝑦𝑡|𝜃, 𝑚, 𝐼)           (19) 

Thus, the posterior predictive density is given by 

𝑝(𝑦𝑡|𝐷, 𝑚, 𝐼) = ∫ 𝑝(𝑦𝑡|𝜃, 𝑚, 𝐼)𝑝(𝜃|𝐷, 𝑚, 𝐼)𝑑𝜃 
Ω

    (20) 

The second term of the integrand, 𝑝(𝜃|𝐷, 𝑚, 𝐼) is the 

posterior density, which has been previously 

determined. The first term of the integrand, 

𝑝(𝑦𝑡|𝜃, 𝑚, 𝐼), is the model density which depends on the 

model and the measurement noise. The model density 

has the same functional form as the likelihood for a 

single data point. Note that, in the case of model density, 

this function is a probability density with respect to 𝑦𝑡 , 
with the parameter 𝜃 assumed to be known.  

 The expression for the posterior predictive density 

(20) shows that the uncertainty in the predicted pressure 

is due to two processes. The first one is contributed by 

the posterior density, which expresses the uncertainty 

about the true value of 𝜃. The second contribution is due 

to the measurement noise. Although, more experimental 

evidence can reduce the uncertainty about 𝜃, 

nevertheless, the measurement noise cannot be 

eliminated. In the maximum likelihood approach, it is 

assumed that the inferred value 𝜃𝑀𝐿 for the unknown 

parameter is the true value and therefore the only source 

of uncertainty is the measurement noise. Indeed, in the 

context of eq. (20), in the maximum likelihood approach 

one claims that 

𝑝(𝜃|𝐷, 𝑚, 𝐼) = 𝛿(𝜃 − 𝜃𝑀𝐿)               (21) 

and hence, the integral in (20) reduces to  

𝑝(𝑦𝑡|𝐷, 𝑚, 𝐼) = 𝑝(𝑦𝑡|𝜃𝑀𝐿 , 𝑚, 𝐼)           (22) 

As the evidence grows, we will become more 

confident about the true value of 𝜃 and hence the 

posterior density becomes narrower and in the limit it 

converges to (21). Nevertheless, as long as the 

uncertainty about the true value of 𝜃 is large, the 

Bayesian and maximum likelihood approaches will 

differ. 

Due to difficulties to find an analytical expression for 

𝑦𝑡, in general, a Monte Carlo based approach is more 

viable. The algorithm below describes the steps. 

Algorithm 1 

Generating 𝑦𝑡; for 𝑖 = 1, … , 𝑁 repeat the following 

steps 

1. 𝜃𝑖~𝑝(𝜃|𝐷, 𝑚, 𝐼) 

2. 𝑦𝑖~𝑝(𝑦|𝜃𝑖 , 𝑚, 𝐼) 

Applying this algorithm for large N (equal to the number 

of MCMC samples), the empirical distribution of the 

samples 𝑦𝑖 will approximate 𝑝 (𝑦𝑡|𝐷, 𝑚, 𝐼). 

3 Results and discussion 

Hydrogen jet fires are causing high overpressure due to 

the high amount of released energy in a very short time. 

The molar balance and temperature in the enclosure 

described in the methodology explained the pressure 

dynamic.  

In the model, the mass balance is crucial for the 

accuracy of overpressure prediction. Therefore the 
discharge coefficient used in the calculation of molar 

flow through the vents (in and out) needs to be 

SIMS 61SIMS 61SIMS 61

DOI: 10.3384/ecp20176443 Proceedings of SIMS 2020
Virtual, Finland, 22-24 September 2020

448



investigated. A discharge coefficient is a dimensional 

number representing flow and pressure loss through the 

orifice. Is a function of Reynold number 𝐶 = 𝑓(𝑅𝑒) 

while the 𝑅𝑒 is a function of the flow rate, hence the 

𝐸𝑙𝑜𝑠𝑠~𝑢2. Some assumptions have been used for 

different scenarios but when the discharge coefficient is 

unknown or uncertain it has to be found experimentally. 

For the computing methods, it is recommended to 

assume C=1 (Crowl and Louvar, 2011). From the 

previous study on PPP it is known that C=1 is an 

assumption that can’t be applied, and lower values 

showed better accuracy. The reasoning of choosing the 

values of C in the work of Hussein et al., (2018) and 

Makarov et al., (2018) was based on the literature 

knowledge and validated against their experiments. The 

values presented in their work are not. It can be due to 

different experimental setups and mass flow rates. In the 

mentioned studies the heat transfer shows its importance 

for the pressure dynamics. Nevertheless, the heat loss 

has been neglected in the model (due to the small scale 

of experiments). 

In the model presented in this paper a simple solution 

of the heat loss is used. The water condensation hasn’t 

been included in the numerical simulations. The heat 

loss described in section 2.2 determines the rate of heat 

transfer through the walls.  

The MCMC evaluation results in the posterior 

distributions. Experiment 11 has been chosen to 

presents the parameter estimation analysis. In the figure 

below (Figure 6) the posterior pdf is presented. The 

clusters you can see on the plots represent the area of 

‘the best’ 𝜃. Experiment 11 resulted in bimodal 

posterior distributions. By looking into the density plots 

of C and h_loss (Figure 4 and Figure 5) the two major 

peaks are clearly visible.  Two clusters represent two 

areas of 𝜃 value which are consistent with the 

experimental results. 

 
 

Figure 6. Bivariate posterior distributions for 

experiment 11. 

Due to uncertainty in measurements, in general, it is 

not possible to uniquely determine the values of the 

unknown parameters. In the Bayesian approach, this 

problem is addressed by the posterior distribution. The 

posterior distribution summarizes the belief in the 

probable range of the values for the unknown 

parameters (Kruschke, 2015). Models are simplified 

versions of reality. In this context, the simplification 

means that we only take into account certain aspects of 

the reality and assume that the other aspects either 

cancel out each other or have no significant influence on 

the description or predicted behaviour of the system of 

interest. One way to evaluate how good these 

simplifications are is to check how accurately the model 

mimics the data. Therefore, it is important to not confuse 

the model inadequacies with the uncertainty due to 

inference. Thus, it is important to keep track of the 

sources of uncertainty. One way to do this is by 

conducting the so called posterior predictive check. 

The MCMC results have been applied into the PPP 

model (Figure 7). Both experimental and simulation 

results have their uncertainty, included in curves. For 

experimental results, the uncertainty is ±1% FSO BFSL 

(grey area around black line Figure 1). For the 

simulation, the uncertainty was calculated at the specific 

time for each sample (vertical red lines from blue dots 

Figure 7). The simulation overestimates the actual 

pressure with 0.6 kPa in maximum pressure and 

underestimates in minimum pressure is 0.6 kPa as well 

which is acceptable.  

 

Figure 7. Pressure dynamics in 14,9 m3 the enclosure 

during experiment 11: experimental (black line), 

simulation with estimated 𝜽 individualy for each time step 

(blue dots). The standard deviation is represented by error 

bars (red lines with caps). 

The simulation result shows good accuracy with 

experiments (Figure 8).  
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Figure 8. Exp11 pressure predicted (red line) vs.

measured (black circles).

4 Summary

In this paper, we have used a Bayesian approach to

estimate parameters in a PPP model. The intended use

for this model is to simulate overpressures from

accidental hydrogen releases in confined spaces. The

parameters of interest were the heat loss coefficient and

the discharge coefficient. The data used in creating the

model, and used when estimating the parameters, was

collected from large scale experiments performed by the

University of South-Eastern Norway.

Markov Chain Monte Carlo was used to generate

samples from the posterior distribution. The

performance of the MCMC algorithm was evaluated,

and seen to perform well.

In this analysis, we found that a discharge coefficient

of 𝐶 = 0.9 and a heat loss coefficient of ℎ𝑙𝑜𝑠𝑠 = 30 are

the most likely values which capture the results across

all the experiments. The Bayesian analysis of the model

gave the most probable values for performed

experiments (set up dimension and flow rates).
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