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Abstract
In subcooled flow boiling, heat transfer mechanism
involves phase change between liquid phase to the vapour
phase. During this phase change, a large amount of
energy is transferred, and it is one of the most effective
heat transfer methods. Subcooled boiling heat transfer
is an attractive trend for industrial applications such as
cooling electronic components, supercomputers, nuclear
industry, etc. Due to its wide variety of applications for
thermal management, there is an increasing demand for a
faster and more accurate way of modelling.

In this work, a supervised deep neural network has
been implemented to study the boiling heat transfer
in subcooled flow boiling heat transfer. The proposed
method considers the near local flow behaviour to predict
wall temperature and void fraction of a sub-cooled
mini-channel. The input of the network consists of
pressure gradients, momentum convection, energy con-
vection, turbulent viscosity, liquid and gas velocities, and
surface information. The output of the model is based
on the quantities of interest in a boiling system i.e. wall
temperature and void fraction. The network is trained
from the results obtained from numerical simulations,
and the model is used to reproduce the quantities of
interest for interpolation and extrapolation datasets. To
create an agile and robust deep neural network model,
state-of-the-art methods have been implemented in the
network to avoid the overfitting issue of the model. The
results obtained from the deep neural network model
shows a good agreement with the numerical data, the
model has a maximum relative error of 0.5 % while
predicting the temperature field, and for void fraction, it
has approximately 5 % relative error in interpolation data
and a maximum 10 % relative error for the extrapolation
datasets.

Keywords: deep neural network (DNN), CFD, machine
learning (ML), sub-cooled boiling, heat transfer.

1 Introduction
Subcooled flow boiling exists when the bulk liquid
temperature remains below its saturation value, but the

surface is hot enough for bubbles to form. Subcooled
boiling is generally observed in micro-channel heat sinks,
due to high heat transfer rates and maintaining relatively
low wall temperature under high subcooled conditions.
Due to the nature of high heat transfer mechanism in
subcooled boiling, it plays a paramount role in enhancing
the thermal efficiency of a system in industrial applica-
tions. However, the physical process that occurs during
the subcooled boiling process is a complex phenomenon,
and it remains a major challenge to predict the heat
transfer behavior correctly in the boiling regime. One
of the first attempts was made by Mohammed (1977),
where they used multiple experimental data of different
fluids to derive a correlation for low and high subcooled
regions to predict the heat transfer coefficients. Kandlikar
(1998) carried out an extensive review of the subcooled
boiling heat transfer correlation, and he also introduced
the region of void flow, where the convective heat transfer
plays an important role due to void fraction. Yin et
al.(2000) examined subcooled boiling heat transfer of
R-134a in a horizontal annular duct, where they showed
that increased subcooling had a huge effect in the bubble
diameter. Through this work, they proposed an empirical
correlation for boiling heat transfer coefficient and bubble
departure diameter.

More recently, Multiphase Computational Fluid Dy-
namics (MCFD) models have been used for modeling
boiling heat transfer and regarded as promising tools
to understand the underlying physic in boiling flows.
Jakobsen et al.(2005) reported that among the available
modeling techniques, the Eulerian multi-fluid approach is
most commonly used for bubble simulation. The Eulerian
multi-fluid approach treats each phase as interpenetrating
continua and relies on an ensemble averaging of the
multiphase Navier-Stokes equations (Ishii, 1975). To
solve the two-fluid model, a closure equation has to
be introduced in the conservation equations for the
individual phase, and the accuracy of the model highly
depends on the closure equations (Besagni et al., 2018).
These closure terms are combination of mechanistic
models and empirical correlation, including nucleation
site density, bubble departure diameter, bubble departure
frequency, and heat flux. A comprehensive review on
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MCFD from Cheung et al.(2014) stated that there is no
single combination of empirical correlations that can
provide satisfactory predictions for all the quantities of
interest for a variety of input conditions.

Machine learning (ML) algorithms provide an agile
framework for specific problems, let it be medical data
or fluid mechanics data. These algorithms can be used
as an additional tools to optimize, understand the corre-
lation that exist in data, speed up simulation and, better
understand the underlying physics that occurs in fluid
flow simulation or heat transfer problems. In recent years
ML techniques are rapidly making an inroad towards
fluid mechanics and heat transfer domain, and this is
becoming possible due to high-performance computing
and the advancement of experimental techniques. Ansari
et al.(2020) successfully implemented Artificial Neural
Network (ANN) for multiphase flow to predict the
dynamic features including pressure, velocity, and the
evolution of phase fraction. They claimed that their model
was capable of predicting within few minutes under 10
% error. Alic et al.(2019) tested various ML algorithms
(Genetic algorithms, ABC algorithms, Support vector
machine (SVM), Decision Tree (DT), and Multi-Layer
Perceptron (MLP)) to predict the heat flux of pool boiling
heat transfer. According to their study SVM regression
model gave the best prediction. Kumar et al.(2018) use
ANN as an inverse model to estimate unknown heat flux
in fin heat transfer with a maximum error of 0.41 %.
They used surrogate data generated from Asymptotic
CFD as an input to the ANN. Hobold and da Silva(2019)
applied supervised and unsupervised ML techniques
to study boiling heat transfer mechanisms, concerning
bubble dynamics and bubble morphology on a wire.
They demonstrated that the ANN-based model could
quantify heat transfer using only direct and indirect visual
information of the boiling phenomenon. Moreover, they
used these models to infer heat flux in real-time using
Raspberry Pi. Buist et al.(2019) used ML algorithms to
learn the closure term for stratified multiphase flow in
channels, from an unsteady high-fidelity simulation data.
Then, the ML model was used to establish a functional
relation between the two-fluid model and the closure
terms, which served as the source term to the two-fluid
model. Ma et al.(2015) used a neural network to fit
Direct Numerical Simulation (DNS) data to develop
closure relations for the average two-fluid equations.
Once the network was trained it was used for different
initial velocity and void fraction. They observed that
the average equations with the neural network closure
model were capable of reproducing the main aspect of
the DNS results. The aforementioned, methods focus
on addressing the heat transfer behavior in pool boiling,
multiphase flow in a channel, or deriving a closure model
with the aid of ML techniques. However, according to
the authors best knowledge, there is no study related to
sub-cooled boiling heat transfer in mini-channel using

Deep learning techniques to predict the void fraction and
the temperature field.

This work focuses on the investigation of a Deep Neu-
ral Network (DNN) model to estimate the quantities of
interest for subcooled boiling in a mini-channel. Data for
training this model is obtained from CFD simulations and
the data are then divided into training, validation, and test-
ing datasets. The model used in this work is tailored to
predict the quantities of interest for varying heat flux and
inlet velocities. This model has 16 input features, and 2
output features, namely wall temperature and void frac-
tion. Overall, this study shows that the DNN model can
capture the physics and non-linear behaviors that exist in
subcooled boiling heat transfer in mini-channel. Once the
DNN model is trained and validated it is used to predict
the QoIs for a new case for interpolation and extrapola-
tion datasets, and it predicted with exceptional accuracy.
From the predictive nature of the trained DNN model and
its predictive speed, it opens up the possibility to use such
a model for the design phase in thermal management for
subcooled boiling systems.

2 Numerical Method for data genera-
tion

The data used for training the Deep NN in this work
are obtained from applying Eulerian two-fluid method to
model the subcooled boiling flow in a mini channel. Nu-
merical simulations are performed using open-source soft-
ware OpenFOAM. The three conservation equation of in-
compressible Navier-Stokes equations are solved to gen-
erate the data. The mass conservation equation for each
phase can be written as following:

∂αkρk

∂ t
+∇.(αkρkUk) = Γki−Γik (1)

where k is the phases, α is the void fraction, ρ is the
phase density, U is the phase velocity and Γ is the mass
transfer rate per unit volume. The momentum conserva-
tion equation for each phase:

∂αkρkUk

∂ t
+∇.(αkρkUkUk) =−αk∇p+Rk +Mk+

αkρkg+(ΓkiUi−ΓkiUk)
(2)

where ∇p is the pressure gradient, R is the combined tur-
bulent and laminar stress term, calculated based on the
Reynolds analogy, g is the gravitational acceleration, and
M is the interfacial momentum transfer which accounts
for the drag forces. The energy transport equation is writ-
ten in terms of specific energy h for each phase k as fol-
lowing:

∂αkρkhk

∂ t
+∇.(αkρkUkhk) = αk

Dp
Dt

+∇

(
αkDe f f

t,k ∇hk

)
+Γkihi−Γikhk +Qwall,k

(3)
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The standard k−ε turbulence model is used to account for
turbulence dispersed flow in the vapor phase. To account
for the turbulence flow behavior of the continuous phase,
the Lahey k−ε (Lahey Jr, 2005) turbulence model is used
for the liquid phase. The k−ε turbulence model is adopted
since it is valid for fully turbulent flows and computation-
ally inexpensive also due its robust nature for pipe flows.
The boiling model used here is based on the well known
RPI model (Kurul, 1991), where the total heat flux q”

w on
the wall is divided in three components, evaporation heat
flux q”

w,e, forced convection heat flux q”
w,c and quenching

heat flux q”
w,q.The total applied heat flux can be written as

follows:
q”

w = q”
w,e +q”

w,c +q”
w,q (4)

For this simulation active nucleation site density is define
on the surface where total heat flux is applied as per the
correlation (Benjamin and Balakrishnan, 1997):

Na = 218Pr1.63
l ∆T 3

supγ
−1

θ
−0.4 (5)

where Prl is the liquid Prandtl number, ∆Tsup is the wall
superheat, γ is a coefficient taking into account the liquid
and heated surface thermophysical properties and θ is a
coefficient taking into account the heated surface rough-
ness and the system pressure.

The bubble departure diameter is calculated based on
the semi-empirical model of Ünal (Ünal, 1976), given as
following:

ddep =
2.42 10−5 p0.709a√

bφ
(6)

where a and b are the model coefficients, taking into ac-
count the working fluid and the heated surface thermo-
physical properties, and φ is a parameter controlled by the
local flow velocity.

The closure term for the bubble departure frequency is
calculated according to the mechanistic model of Brooks
and Hibiki (Brooks and Hibiki, 2015) as:

fdep =
C f dJa0.82

w N−1.46
T ρ∗−0.93Pr2.36

sat

d2
dep

(7)

where C f d is the model coefficient depending on the size
of the channel where boiling occurs, NT is a dimension-
less temperature, ρ∗ is a dimensionless density ratio, Jaw
is a modified Jacob number and Prsat is the liquid Prandtl
number evaluated at the corresponding saturation temper-
ature. With the initial and boundary conditions specified
along with closure terms, the solver is able to predict the
boiling heat transfer accurately and data are generated.

2.1 Data Extraction
The 2D computational domain of the mini-channel used
for simulation is shown in the Figure 1. The channel has
a total height of 0.6 m along the y-axis and 0.003 m along
the x-axis. To avoid the influences of the boundary, non-
developed flow, and to account, only the surface where

Figure 1. Domain region of interest

Table 1. Input features used for training the network.

Input Features Feature Expressions

Pressure gradient ∂ 〈p〉
∂x

∂ 〈p〉
∂y

Momentum convection ∂ 〈p〉〈u〉〈u〉
∂x

∂ 〈p〉〈u〉〈v〉
∂x

∂ 〈p〉〈u〉〈v〉
∂y

∂ 〈p〉〈v〉〈v〉
∂y

Energy convection ∂ 〈p〉〈T 〉〈u〉
∂x

∂ 〈p〉〈T 〉〈v〉
∂y

Total heat flux qtotal
Velocity inlet Uinlet
Pressure inlet pinlet
Temperature inlet Tinlet
Ambient pressure pamb
Fluid and gas viscosity µl µg
Non-dimensional x and y axis x∗, y∗

Table 2. Output features (quantities of interest).

Output Features Feature Expressions

Wall Temperature Twall
Void Fraction α

heat flux is applied, domain region of interest (ROI) is
selected for data extraction. The number of cells in the
ROI is 321x26 resulting in 8,346 data points for each case.
The domain axis (x and y) is further converted into a non-
dimensional number so that the model is not constrained
to learn based on the height of the channel and applicable
for other channel lengths. In total 106 simulations have
been performed for inlet velocity ranging from 0.05 ms−1

to 0.2 ms−1 and heat flux ranging from 1000 Wm−2 to
40000 Wm−2. 100 cases are used for training and val-
idation, further, the data are split into 80 % percent for
training and 20% for validation purpose. The remaining 6
cases are used for evaluating the model performance.

The selected feature inputs obtained from CFD simu-
lations are shown in the Table1. The inputs are chosen
based on their influence on the quantities of interest. The
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quantities of interest chosen in this work are void fraction
which controls the pressure drop and the flow regimes, and
wall temperature which is relevant for cooling. The output
of the deep neural network model is shown in the Table 2.
Before feeding the data into the network, the input features
and output features are normalized between 0 and 1. This
way the ML algorithms can learn better since the scale
of data is very sparse. It is also worth mentioning that the
data are randomly shuffled with a random instance of 8000
data points for every reshuffle. Shuffling the data ensures
low variance and avoids the risk of creating batches that
are not representative of the overall dataset while training
the model.

3 Deep Neural Network Architecture
DNN is a type of Artificial Neural Network, where the
number of hidden layers is more than one layer. The first
and last layer serve as input and output layers similar to
that of an ANN. The DNN architecture used in this work
is shown in Figure 2. The network is trained using the
backpropagation technique, meaning there are two phases
involved in training the network. The first phase is called
the forward phase. Here the signals from the input layer
(training data) are propagated along the hidden layers with
series of non-linear transformations controlled by weights
and biases, followed by a nonlinear activation function un-
til the output layer is reached.

h1 = g(W T
1 x+b1)

..

h5 = g(W T
5 h4 +b5)

ŷ = g(W T
6 h5 +b6)

(8)

g(x) =

{
0 for x < 0
x for x≥ 0

(9)

The activation function g(x) used in this work is rectified
linear units (ReLU), where h stands for hidden layers,
W is the weights of each layers, and b is biases of the
network.

A loss function is defined while training the network
to measure the error between the predicted value ŷ and
the target value y. For this work, the mean squared error
(MSE) is used as the loss function to compute the error
then the error gradient is used to compute the new weights
and biases of the neurons. Based on the computed gradi-
ents, the weights and biases are updated using Adaptive
Moment Estimation (Adam) (Kingma and Ba, 2014) opti-
mization technique in a backward direction with a learning
rate of Lr = 1e−4. Hence, the second phase is called the
backward phase.

The following measures have been taken to avoid over-
fitting while training the network. First and foremost L2
regularization term is introduced in the loss function. Sec-
ondly, callback functions are defined to save only the best

Figure 2. Architecture of the 5 hidden layer DNN.

weights of the network, early stopping of the training if the
validation loss does not improve in the next epoch. Epoch
is a term used when training a ML model, and it indicates
the number of passes of the entire training dataset the ML
algorithm has completed.

Lloss = MSE(y, ŷ)+λ

N

∑
i=1

w2
i

L2norm

(10)

Where λ is a positive hyperparameter that influences the
regularization term, N is the total number of data. While
training the network other metrics such as, RMSE and co-
efficient of determination (R2) along with loss MSE func-
tion were defined to measure the accuracy of the model.
Figure 3 shows the training RMSE and validation RMSE
of the model trained for 500 epochs.

Figure 3. Training and validation RMSE error for 500 epochs.

In this work, the open source deep learning library
Tensorflow 1.14 from google is used for constructing the
model. The model is trained using GPU which allowed
faster training compared to CPU.

4 Results and Discussion
4.1 Validation dataset
Before validation or evaluation of the model, the best
weights of the model saved by the callback functions dur-
ing training are first loaded. This confirms that the model
weights used for validation and evaluation are the best
one, and it is not an overfitted model. The errors in temper-
ature, and void fraction values predicted using the DNN
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Figure 4. Predicted error on validation dataset for DNN model.

model from that of CFD values is illustrated in Figure 4.
It is seen that the error lies around zero value for both the
fields. Looking at the number of counts it can be inter-
preted that the DNN model slightly under predicts for the
void fraction, since there are more counts on the negative
side.

To get more insight of the model and its robustness, re-
gression chart with relative error % is shown in Figure 5.
The relative error here is defined as: (Predictedvalue −
CFDvalue) ∗ 100/CFDvalue. The solid 45◦ black line is
the true line where DNN predicted values would perfectly
match the CFD results. The blue dashed line stands for
relative percentage error, the relative error is different for
temperature and void fraction due to differences in scale.
It can be further observed from the figure that the relative
error for predicted temperature is under 0.5 % error, which
clearly shows that the DNN model can capture the temper-
ature variation well. Whereas, in the case of the validated
void fraction, the relative error is about 5 %, and it is seen
that there are few outliers near-zero void fraction. The out-
liers present in the plots are statistically insignificant when
compared to the number of data points (83460) present in
the plot. The quantitative values of the DNN model on the

Figure 5. Comparison of CFD value and DNN value for the
validation dataset.

validation dataset is presented in Table 3. From the table,
it can be depicted that the model fits very well with the
validation data and has a very low value of RMSE.

4.2 Test dataset
4.2.1 Interpolation datasets

Interpolation dataset here means that the chosen Q =
15000 Wm−2 at velocity inlet u =0.05 ms−1 lies between
the range of training data, but this data were not used
for training nor validation. Once the model has been

Table 3. Statistics table of the validation dataset. Val: Valida-
tion, VF: Void Fraction, Temp: Temperature

Dataset R2 RMSE
VF Temp VF Temp

Val 0.998 0.995 0.0059 0.134

validated, the unseen test data are used to evaluate the
model. Figure 6 shows the temperature field obtained
from a CFD result, the temperature field predicted using
the DNN model, and the relative percentage error between
them. It is noticeable from the figure that the error ranges
between± 0.3 %, which implies the DNN model can cap-
ture the complex nature, and the model could be used for
predicting unseen cases. However, the model slightly over
predicts the temperature field near the wall of the channel,
and under predict around the center of the channel. To
understand furthermore and to closely observe the perfor-
mance of the model in near-wall region Figure 7 is plotted,
which shows the trend of void fraction and wall tempera-
ture along the channel. From the figure it can be further
noted that the DNN model is capable of predicting the sub-
cooled boiling regimes closely to that of CFD values.

Figure 6. Temperature field for CFD, DNN and relative error %
for Q =15,000 Wm−2 at u = 0.05 ms−1 .

Figure 7. CFD, DNN wall void fraction and wall temperature
for Q =15,000 Wm−2 at u = 0.05 ms−1 . Arc length: The
non-dimensional length along the y-axis near the wall of the
minichannel.

The void fraction field in the channel obtained from
CFD and predicted results from DNN is presented in Fig-
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Figure 8. Void fraction field for CFD, DNN and relative error
% for Q =15,000 Wm−2 at u = 0.05 ms−1 .

ure 8. Here it can be seen that the relative error ranges
from 3.2 % to -6 %, and this error is mostly concentrated
near the non-dimensional arc length of 0.5 where the void
fraction suddenly starts to increase. This sudden change
in void fraction can be observed in Figure 7, and it can
be observed that temperature is closely related to this phe-
nomenon. One explanation could be due to the presence
of a hotspot, caused by the formation of a bigger bubble
or a large number of bubbles near the wall resulting in a
sudden increase in void fraction and temperature.

Figure 9 shows how well the model fits on the interpo-
lation test data. From the plot, it can be spotted that the
trend of error is similar to that of the validation dataset,
but the number of outliers is lower because the test data is
10 times less than that of validation data. Again from the
temperature regression chart, it is noticeable that there is
an offset in predicted temperature around 374 K, but the
relative error is still under 0.3%. With the above-presented
results and from Table4, it is possible to conclude that the
DNN model can predict well for interpolation cases.

Figure 9. CFD, DNN regression chart of void fraction and tem-
perature for Q =15,000 Wm−2 at u = 0.05 ms−1 .

4.2.2 Extrapolation dataset

The dataset used for extrapolation is an extreme case,
meaning this data is far away from any data that is used
during training of the model. It is to be noted that the
extrapolation data sets are already available through CFD
calculation but it is not used for training the DNN. The
maximum heat flux and velocity used during training

Figure 10. Temperature field for CFD, DNN and relative error
% for Q =40,000 Wm−2 at u = 0.2 ms−1 .

ranges from Q= 1000 to 29,000 Wm−2 and u = 0.05 to 0.2
ms−1 , while the data used for extrapolation have a heat
flux value of Q =40,000 Wm−2 at u =0.2 ms−1 . The mo-
tive was to see if the DNN model has learned sufficiently
the underlying physics of subcooled boiling from the data
provided during training, and hence reproduce the physics
on unseen cases away from the training region.

The temperature field obtained from CFD data and the
predicted value by the DNN model is shown in Figure 10.
From the figure it can be observed that the DNN model
follows the same pattern of temperature distribution
along the channel. The next plot shows how far is the
predicted value from the CFD value, and it is worth
noticing that the relative error is still under ± 0.5 % error.
The possible explanation for this behavior could be that
the DNN model has the capability of learning from the
local features and intrinsic pattern present in the training
data, and it can extrapolate the data points to explain the
physical process of subcooled boiling temperature.

Figure 11. CFD, DNN wall void fraction and wall temperature
for Q =40,000 Wm−2 at u = 0.2 ms−1 .

The void fraction and the wall temperature near the
wall region are illustrated in Figure 11. From the plot, it
can be noted that the DNN model over predicts until the
arc length of 0.24 and it starts to under predicts until 0.75
arc length then follows the pattern of CFD data. From
this, it is possible to conclude that the DNN model finds
it difficult to capture the void fraction when its value
is equal to zero. The temperature profile near the wall,
however, follows a good trend compared to CFD data.
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Table 4. Performance of the DNN model on test dataset, VF: Void Fraction, Temp: Temperature, Inter: Interpolation, Extra:
Extrapolation. *: Results presented in the paper.

Cases U Q RMSEP R2 Error(%)
ms−1 Wm−2 VF Temp VF Temp VF Temp

Inter* 0.05 15000 0.0088 0.13 0.999 0.995 3.64 0.31
−6.09 −0.26

Inter 0.075 17500 0.0066 0.129 0.999 0.996 4.3 0.26
−4.5 −0.36

Extra 0.1 30000 0.011 0.23 0.998 0.98 9.48 0.617
−8.33 −0.303

Inter 0.15 19000 0.0025 0.08 0.96 0.99 2.4 0.121
−1.4 −0.27

Extra 0.15 30000 0.0084 0.196 0.98 0.99 7.07 0.4
−9.29 −0.414

Extra* 0.2 40000 0.013 0.278 0.982 0.987 10.8 0.58
−10.5 −0.47

Figure 12. Void fraction field for CFD, DNN and relative error
% Q =40,000 Wm−2 at u = 0.2 ms−1 .

The CFD domain and the domain predicted using the
DNN model is indicated in Figure 12. From the relative
error plot it is noticeable that the maximum relative error
is in the range of ± 10.5 %. These errors are mostly con-
centrated near the wall, and the upper region of the chan-
nel. The possible explanation for such a behavior may
be due to the lack of data for such high heat flux value
in the training data and the physical nature of the prob-
lem in these region is difficult to predict resulting in poor
prediction. Nevertheless, the DNN model still follows the
trend of CFD void fraction value, and it can predict the
whole domain under 10 % relative error. Figure 13 shows
how well the model fits the extrapolation data, for void
fraction around 90 % of the data lies between ± 5% rela-
tive error to that of the true line (solid black line) and re-
maining 10 % of the data points are the sparse one which
inflicts the maximum error in the model. Looking at tem-
perature data distribution, there are some non-linear data

points around 376 K, which accounts for 0.5 % relative
error in the model.

Figure 13. CFD, DNN regression chart of void fraction and
temperature for Q =40,000 Wm−2 at u = 0.2 ms−1 .

The model performance for all the test data is presented
in Table 4. The test data consist of interpolation and ex-
trapolation dataset. It is noticeable that the model is eval-
uated, on quite a variety of datasets. This provides a
strong indication of how generalized the model used in
this work is. It is worth noticing that the RMSEP val-
ues are well below 0.3, and the coefficient of determi-
nation score is about 0.98 on average. This shows how
well the model fits the data. From the presented results,
it is possible to conclude that the model performs very
well when predicting the temperature field in the domain
with a maximum relative error of 0.6 % for both inter-
polation and extrapolation datasets. However, the models
still lacks good accuracy when it comes to predicting the
void fraction field, especially near the wall for the extrap-
olation datasets. Nonetheless, the model can still follow
the trend of CFD values and predict well for the interpo-
lation datasets, and for extrapolation datasets that are not
far away from the values used for training.
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5 Conclusion and Future Work
In this work, a supervised deep neural network model
based on the backpropagation technique is implemented
to study the subcooled boiling heat transfer. The training
data are obtained from CFD simulations from varying heat
fluxes and inlet velocities. In total 106 cases were simu-
lated, out of which 80 cases were used for training the net-
work, 20 cases for validation purposes, and the remaining
6 cases for evaluating the model. After training, the per-
formance of the DNN model was validated using the vali-
dation dataset, and then the model performance was eval-
uated using test datasets. The model showed good level of
accuracy while predicting temperature and void fraction
field for both interpolation and extrapolation dataset. In
the case of extreme extrapolation, the model performance
deteriorated while predicting the void fraction field with a
maximum error of 10.8%. Nonetheless, the model showed
an exceptional level of accuracy while predicting the tem-
perature field with a maximum error of 0.6%. From the
results obtained in this work, it is demonstrated that the
DNN model is capable of capturing the subcooled boiling
pattern, and it is applicable for interpolation and extrapo-
lation data extraction of the quantities of interest. More-
over, the DNN model trained on the local flow features
has acceptable generalization property, and it can be used
as a promising tool to help improve the predictive speed
of MCFD solvers. Therefore, the future work will fo-
cus on improving the predictive nature of the DNN model
for void fraction field, and for quantifying the uncertainty
present in the DNN model.
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