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Abstract 
Enterprise resource planning (ERP) systems and 
manufacturing execution systems (MES) are becoming 
more and more important also for the small and 
medium-sized enterprises (SMEs). Even though the 
failure rates of the ERP projects seem to be exaggerated, 
the failures and problems in the integration cost lots of 
time and money. Therefore, there is clearly a need for 
test environments for the ERP and MES systems. This 
paper presents an approach to test these information 
systems by connecting them to the simulation models of 
the production and thus generating a digital twin of the 
production and the ERP/MES systems. As a proof-of-
concept, two different twins are constructed with two 
different software. 
Keywords:     digital twin, simulation, ERP, MES 

1 Introduction 
Enterprise resource planning (ERP) systems are 
integrated management systems of main business 
processes, such as production, input and output 
logistics, finance and accounting, sales and marketing, 
and human resources. An ERP system helps different 
parts of the organization to efficiently share data and 
information thus reducing costs and improving the 
management of business processes. Manufacturing 
execution systems (MES) are information systems for 
controlling, tracking, and documenting the process of 
manufacturing products it the factory floor. MES 
ensures effective production and provides information 
that can be utilized for improving the production output. 

Traditionally, ERP and MES systems have been 
software for big companies. However, because of the 
ongoing era of digitalization and tightening competition, 
also small and medium-sized enterprises (SME) are 
more commonly investing in these systems 
(Supramaniam et al, 2014). 

ERP projects are notorious for having low success 
rates and swollen costs, and there are numerous web 
pages by different consultant firms repeating the 
doomsday figures that assure that the frightening 
reputation is true. However, most of them do not have 
any reference for their figures and the ones that have 
seem to be cross-referencing each other or not-existing 
reports. Nevertheless, there are some actual publications 

by the consultant companies as well. According to a 
report by McKinsey, roughly 75 % of ERP projects fail 
to stay either on schedule or within budget, and around 
67 % have a negative return on investment (Casanova et 
al, 2019). However, the report does not mention the 
exact source of these figures. Another report by 
Panorama Consulting Group (2020) states that 38 % of 
the ERP projects exceed the budget (average 66 % over) 
and 47 % do not stay in the schedule (average 33 % 
overtime). The report is based on a survey with 181 
respondents, out of which 34 % are manufacturers 
(Panorama Consulting Group, 2020). Yet another report 
made by Mint Jutras (2019) states that 46 % of the ERP 
projects exceed the budget and 38 % do not stay in the 
schedule. It also states that 67 % rate their 
implementation as successful. The report is based on a 
survey of 315 respondents. These figures are much more 
positive than the ones reported by e.g. McKinsey and 
fairly in line with the ones presented by Panorama 
Consulting Group. However, the authors also suspect 
that based on the actual benefits realized, many of the 
respondents might be overrating their success (Mint 
Jutras, 2019). 

Some recent academic research has been conducted 
on the success of the ERP projects as well. Johansson 
and Sudzina (2019) studied the ERP implementations in 
the European SMEs and they found that only 26 % 
exceeded the budget, of which around one third 
exceeded the budget with 50 % or more. The survey had 
121 respondents from Denmark, Slovakia and Slovenia 
(Johansson and Sudzina, 2019). As stated by Haddara 
and Zach, (2012), the ERP implementation projects are 
typically easier and shorter in SMEs since the size of the 
organization is smaller and the business complexity 
lower. However, the staff must often play multiple roles 
in small companies, and thus allocating enough 
resources to the ERP project might be problematic (Mint 
Jutra, 2019). Also, for the SME, the overruns in the 
budget and time can be even more disastrous than for a 
big company. 

Based on the surveys presented, the failure rates of 
the ERP projects seem to be overrated. Nevertheless, the 
budget and schedule overruns are quite common. Also, 
the unchallenged fact is that some extremely expensive 
ERP implementation catastrophes have occurred (e.g. 
listed in Ram et al, 2013), and many times the 
employees have found the fresh ERP system to be too 
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stiff and to lead to some inefficient practices such as 
process duplication (Kerr and Houghton, 2014). To 
support the implementation process and to estimate the 
possible bottlenecks, different tools and analyses such 
as critical success factors (Ram et al, 2013), critical 
success strategies (Yeh and Xu, 2013), critical failure 
factors (Amid et al, 2012), project risk modeling (Aloini 
et al, 2012), and maturity models (Kerr and Houghton, 
2014) have been developed. However, these approaches 
may be too theoretical and too complex especially for 
the needs of the SMEs. More concrete testing 
procedures would be beneficial. 

The actual testing of the ERP and MES systems in the 
production environment before the investment decision 
is extremely difficult. Often, the only option is to trust 
in the supplier’s promises. In this paper, a testing 
approach based on digital twins is suggested.  

 Barricelli et al (2019) define digital twins as 
computer-based models that are simulating, emulating, 
or mirroring a physical entity or a process. They 
emphasize that instead of “just” a simulation, it is the 
virtual counterpart of the entity or the process, and the 
data flow in and out of the twin is essential. 
Manufacturing is one of the main application domains 
of the digital twins, and the application cases include 
factory design, manufacturing optimization, consistent 
process monitoring, and predictive maintenance 
(Barricelli et al, 2019). Thus, it seems a promising 
technology also for testing the IT systems for the 
manufacturing companies. 

In this paper, a proof-of-concept of using digital 
twins to test ERP and MES systems is presented. The 
main target group of the approach is SMEs. The digital 
twins are constructed by generating the simulation 
models of two different manufacturing systems and 
connecting them to the custom MES systems and an 
ERP system with an online shop interface. This way, 
handling the customer order, starting the production, 
monitoring the production process, and receiving data to 
the IT systems from the production can be 
experimented. 

The rest of the paper is organized as follows: Section 
2 discusses the pilot production environments used in 
this study, Section 3 presents the digital twins produced, 
and Section 4 draws the conclusion. 

2 Pilot Production Environments 
This section presents the two manufacturing systems 
that were used as pilots in this study. They were the 
educational cyber-physical factory and a flexible 
manufacturing system (FMS) cell. The systems are 
presented in their sub-sections. 

2.1 Educational Cyber-Physical Factory 
The cyber-physical factory is a modular production line 
for education purposes made by Festo Didactic. The 
factory assembles simple cell-phone-like products 

consisting of a back cover, a printed circuit board (PCB) 
and fuses. The PCBs are made of plastic and they do not 
have conductive tracks, pads or connectors – only the 
holders for the fuses. The purpose of the cyber-physical 
Factory is to demonstrate different assembly processes 
and hardware as well as offer insight into the modular 
design, networked logistics, and MES integration. 
Altogether 192 different product variants can be 
assembled from the components of different colors.  

The cyber-physical factory consists of a high-bay 
storage for the back covers and the assembled products, 
a drilling station, a robot assembly cell, in which the 
robot mounts the PCBs to the back covers and the fuses 
to the PCBs, and a machine-vision-based inspection 
station for assuring the correct composition of the 
assembled product. The factory is controlled by Festo’s 
own MES4 software. A custom MES software made by 
the students is in use as well. Figure 1 presents the 
cyber-physical factory, and Figure 2 shows an example 
of a product that can be assembled with the factory. 

 
 

 
 

Figure 1. The educational cyber-physical factory. The 
high-bay rack (1), the drilling station (2), the robot 
assembly cell (3), and the machine vision station (4). The 
modules are numbered in the order of the process flow. 

 
 

 
Figure 2. One product variant of the cyber-physical factory 
consisting of a gray back cover, a blue PCB and transparent 
and red fuses. 
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2.2 FMS Cell 
The flexible manufacturing system (FMS) cell by 
Fastems consists of a stacker crane, a pallet storage for 
wooden Euro-pallets and machining pallets, a loading 
station for the machining pallet, an industrial robot, 
pallet stations inside the robot cell, and a machining 
center. The MES system used to control the production 
of the cell is Fastems MMS. The FMS cell can be 
configured to produce a high variety of products, and the 
cell is manufacturing support parts in the example 
application of this study. The production cycle has six 
phases, and it goes as follows: (1) The stacker crane 
picks a pallet containing the blank and an empty pallet 
from the pallet storage and places them into the pallet 
stations of the robot. (2) The robot picks the blank from 
the pallet in the pallet station and places it to the 
machining pallet in the loading station. (3) The stacker 
crane takes the machining pallet and the blank to the 
machining center, where the support part is machined 
from the blank. (4) The stacker crane returns the 
machining pallet and the machined support part to the 
loading station after machining. (5) The robot picks the 
support part from the machining pallet and places it to 
the machine vision inspection. (6) The robot places the 
support part to the pallet for the machined parts after the 
inspection. Figure 3 shows the FMS cell. 

3 Digital Twins 
This section presents the digital twins of the production 
environments discussed in the previous section. The 
ERP system used with both the digital twins was Odoo. 
Odoo is an open-source ERP system and it was chosen 

because it is attractive for SMEs due to its affordable 
price (community version: free) and the high availability 
of different modules and add-ons that make the software 
scalable. The users can also create their own Odoo 
modules. 

In order to send the manufacturing orders from Odoo 
to the simulation models, it was necessary to develop a 
small Odoo application for this purpose. In practice, the 
Odoo application reads the sale order data, creates a 
manufacturing order, and sends it to an external Python 
application. 

3.1 Python web application 
The Python web application acts as an intermediary 

between Odoo and the simulation models. It receives the 
manufacturing order from the Odoo, validates the order 
data, creates the steps of the work rotation, and sends 
commands to the simulation models. It also receives 
data from the simulation models. The application 
communicates with the simulation models via TCP/IP 
sockets and the data is sent and received in JSON 
format. 

The application has a user interface in the form of a 
web page, where the user can inspect and get 
information from the states of the devices in the models, 
monitor the storage inventories, run the individual 
subprogram of the devices, create new manufacturing 
orders, and control (start/delete) pending manufacturing 
orders. Thus, the application can be considered as an 
MES tailored for the simulation models. 

The application is implemented with Flask micro web 
framework and the web page uses Bootstrap 4 CSS 
framework for the visual appearance. 

 
Figure 3. The FMS cell. The stacker crane (1), the pallet storage (2), the loading station (3), the industrial robot (4), the 
pallet stations (5), and the machining center (6). 
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3.2 Educational Cyber-Physical Factory 
The simulation model of the Cyber-Physical Factory 
was made with Tecnomatix Plant Simulation, and the 
manufacturing orders are created with the Odoo ERP 
system. The product variants are generated in the 
Siemens Teamcenter PDM system from where a Python 
accessory inserts them into the Odoo database. In the 
database, a bill of materials (BOM) is created for the 
product and the product is published in the Odoo online 
shop. In the online shop, the customer can choose the 
colors (and in the case of the fuses, the number) of the 
components and make the order. 

The Plant Simulation model assembles the product as 
well as sends information about the state of the assembly 
process and the current storage inventories back to the 
web application. Figure 4 presents the digital twin of the 
production process of the cyber-physical factory, and 
Figure 5 shows the view from the Odoo online shop. 
 

3.3 FMS Cell 
The simulation model of the FMS cell was made with 
Visual Components. The industrial robots, workpiece 
positioner, Euro-pallets and shelves were added from 
the model library of the Visual Components while the 
rest of the devices and accessories were designed in 
Siemens NX. The CAD files were then imported into the 
Visual Components where the properties of the devices 
were defined. 

In Visual Components, the functionality of the 
devices can be extended with scripts that are written in 
the Python 2.7 programming language. In the simulation 
model of the FMS cell, a Python script enabling a 
TCP/IP connection to an external Python web 
application was added to the stacker crane, the loading 
station, the robot and the machining center. Thus, these 
devices can send and receive data. 

 
Figure 4. The digital twin of the production process of the cyber-physical factory. 

 

 
Figure 5. View from the Odoo online shop for ordering the 
“cell phones”. 

  
 

Figure 6. View from the Odoo online shop for ordering 
the support parts. 
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The simulation model of the FMS cell can run two 
work rotations: machining of a support part and 
polishing a cube. In the Odoo online shop, the customer 
can set the distances of the holes of the support, and the 
X and Y components of the force acting to the support. 
The machining time of the support is calculated based 
on these parameters. During the machining work 
rotation, the machining time is sent to the machining 
center. 

Figure 6 shows the view from the online shop, and 
the digital twin of the FMS cell is seen in Figure 7. 

4 Results and Discussion 
The digital twins of the educational cyber-physical 
factory and the FMS cell were built and connected with 
the Odoo ERP system as discussed in Chapter 3. Also, 
the physical cyber-physical lab was connected with the 
Odoo ERP. Placing customer orders in the online shop 
as well as accepting the orders and starting the 
production in the admin side are functioning similarly 
with the physical system and the digital twin. The FMS 
cell will also be connected with Odoo in the near future.  
So far, the tests have been limited to creating individual 
device interfaces to the industrial robot and the 
machining center. The simulation models mimic the 
work cycles of their physical counterparts, but all the 
details were not modeled – for example, the shape of the 
ready support part in the digital twin of the FMS cell is 
always similar and do not imitate the ordered part. 
However, all the tests described here offer a proof-of-
concept of the approach. 

Apart from testing the ERP–MES integration, this 
approach could be utilized to test the capacity to produce 

different kinds of big orders and estimate the delivery 
time. Also, these kinds of digital twins can be used 
widely for educational purposes. This is resource 
efficient as a big group of students can work 
simultaneously with the models instead of working in 
shifts in one laboratory. The model of the FMS cell 
presented in this paper has already been utilized in 
teaching e.g. socket programming. Currently, the 
simulation models lack the functionality to inform the 
MES or ERP of an error that occurs in the production, 
but this kind of functionality can be added. This addition 
would give also valuable information about the data 
transfer from the error situations of the production to the 
information systems. 

One important aspect is the modularity of the 
presented approach. This is estimated below separately 
for both twins.  

The digital twin of the educational cyber-physical 
factory consisted of the Odoo online shop, the PDM-
Odoo interface, the Odoo-Plant Simulation interface and 
the Plant Simulation model. If some company would 
like to test the suitability of Odoo to their production, 
the Plant Simulation model and the PDM-Odoo 
interface should be fully reconstructed. However, the 
PDM-Odoo interface is not compulsory as the product 
variants can be created in Odoo itself in the new versions 
(Odoo 13 or above). The Odoo-Plant Simulation 
interface would need to be updated but much of it could 
be reused. On the other hand, if a different ERP system 
should be tested with the re-existing model, the ERP-
Plant Simulation interface should be reconstructed.  

The digital twin of the FMS cell consisted of Odoo 
online shop, Odoo-Visual Components interface (the 

 
Figure 4. The digital twin of the FMS cell. 

 

SIMS 61

DOI: 10.3384/ecp20176379 Proceedings of SIMS 2020
Virtual, Finland, 22-24 September 2020

383



REST interface), Visual Components model and the 
TCP/IP socket communication blocks inside the model. 
Again, if the production scheme changes, the Visual 
Components model needs to be reconstructed. The 
Odoo-Visual Components interface would need an 
update but many of its parts would be still usable. The 
socket communication blocks would need no more than 
a minor update. Changing the ERP system would need 
reconstructing the ERP-Visual Components interface. It 
is also worth noting, that the Odoo-Plant Simulation 
interface and the Odoo-Visual Components interface are 
mostly similar instead of few conditional statements. 
The major reason for the differences in the interfaces is 
the difference in functioning of the physical devices: the 
modules of the educational cyber-physical factory poll 
actively the MES whereas the devices of the FMS cell 
just wait for the orders from the MES. 

5 Conclusion 
This paper presented the concept of testing ERP and 
MES integration with a digital twin approach. The 
benefit of the approach is that it enables testing the ERP-
MES integration beforehand without the need to 
interrupt the actual production. The approach gives a 
concrete demonstration of the functioning of the ERP 
system. Therefore, making the order in a online shop, 
handling orders, and the exchange of the data between 
the systems can be tested with it. Two different 
simulation models were created with two different 
modeling software to show the flexibility of the method. 

The main downside of the approach is that generating 
a digital twin takes time. If the production system of the 
company is very complex, then a highly complex model 
must be constructed as well. However, as the target 
group of the method is SMEs, the production is not 
expected to be extremely complicated. Another 
disadvantage is that the interfaces between the model 
and the ERP/MES systems should be tailored for each 
ERP system. Yet, the selection of the ERP systems 
suitable for SMEs is not that large and thus this problem 
is not that crucial. Lastly, the constant question with the 
models is how well they correspond to the actual system. 
Precision is needed in generating the digital twins. 

 Although there are some open questions, the 
demonstrations of the digital twin approach to test ERP 
and MES are really promising. Another ERP system and 
some commercial MES systems will be tested in the 
near future. Future work includes also adding more 
intelligence to ordering and manufacturing. Firstly, the 
support part orders made for the FMS system will be 
passed to a CAD program and further to FEM 
calculation to prevent the user from ordering a 
physically inconsistent part. Furthermore, the geometry 
of the support part will be fed into CAM software for 
automatic CNC cutting program generation. The 
generated CNC program will be simulated to validate 
for collision-free path and calculate the part's machining 

time. Calculated machining time will be further used to 
fine-tune the full factory simulation times, calculating 
more precise cost estimations and price quotations. 
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