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Abstract
Digital twins for performance-oriented applications in

industrial environments require systematic model

maintenance. Model adaptation requires efficient

optimization tools and continuous evaluation of

measurement quality. The adaptation and model

performance evaluation are based on the modeling error,

making the adaptation prone also to the measurement

errors. In this paper, a framework for combining model

adaptation and measurement quality assurance are

discussed. Two examples with simulated industrial-

scale biopharmaceutical penicillin fermentation are

presented to illustrate the usability of the framework.

Keywords:     digital twin, adaptation, framework,

differential evolution

1 Introduction

Simulation tools have efficiently been applied in various

engineering problems such as in process design and

production planning. Currently, the simulation tools are

also developed to real-time utilization. In process

industries, the simulation models are, for example, used

as an open-loop decision support tool (scenario

simulation, prediction). These models can be considered

as digital twins as essentially, “the digital twin is a

virtual and computerized counterpart of a physical

system that can be used to simulate it for various

purposes, exploiting a real-time synchronization of the

sensed data coming from the physical system”. (Negri

et al., 2017)

The digital twins can be classified in terms of their

utilization in different tasks and areas, for example,

design twins, performance twins and product or

production twins. An important classification can be

made in terms of real-time integration between the twin

and its physical counterpart. Digital twin needs to have

a closed-loop, automatic integration to the real process.

Otherwise the correct term is a digital model (without

integration) or a digital shadow (an open-loop

integration). (Kritzinger et al., 2018)

Foreseen possibilities applying digital twins in

continuous processes have been discussed for example

in (Sun et al., 2017). In case of digital twins and shadows
in these kinds of performance-oriented applications, it is

crucial that the simulation model represents the real

system continuously. Therefore, the performance of the

digital model needs to be evaluated and the model needs 

to be updated automatically to cope with unseen or 

unmodeled changes. 

The continuous updating, namely model adaptation 

requires efficient data-analysis and optimization tools. 

In general, the adaptation can be based on several 

techniques (Kadlec et al., 2011). However, both the real-

time requirements and the model complexity 

(interconnected measurements and parameters) can 

make the adaptation problem challenging. Several 

methods have been presented to match the physical 

process with the digital model (Ohenoja et al., 2018; 

Friman and Airikka, 2012; Pietilä et al., 2013; 

Schirrmacher et al., 2009), but with limited insight on 

the whole problem. 

This paper elaborates the overall picture on 

development and maintenance of a performance digital 

twin in industrial processes. In real systems, the actual 

parameters are not known. Hence, the whole adaptation 

(model performance evaluation) can only be dependent 

on the modeling error, making the adaptation prone also 

to the measurement errors. It is assumed that the 

adaptation involves a multivariable optimization 

problem. The computational issues, such as the real-

time requirements are out of the scope of this 

presentation. Figure 1 presents the discussed 

framework. In Sections 2—4, the different elements of 

the framework are treated more detailed. In Section 5, 

simulated examples are presented.  

2 Measurements as a foundation for 

adaptation framework 

Modern industrial automation system includes 

measurements with varying characteristics; There can 

be sparse or even discontinuous data from the online 

analyzers and laboratory measurements providing 

product quality measurements, continuous automation 

system data with even sampling interval, and data with 

very high sampling frequency that needs to be 

preprocessed before used for decision making and 

process control. In addition, soft sensors are often used 

to infer measurements from harsh environments or 

otherwise difficult locations, or they can be used parallel 

to physical measurement device for validation and 
backup purposes. 
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The concept for adaptation of industrial digital twin is 

presented in Figure 1. Different measurements from the 

real process on the right upper corner are used to monitor 

the modeling error of the digital twin on the upper left 

corner. Measurement quality is ensured by real-time 

monitoring and data reconciliation. Low quality or missing 

data is accounted in cost function generation.  

Using a digital twin for decision making, robust self-

diagnostics is required. Sensor malfunctions, 

measurement drifting, and other possible systematic 

error sources such as fouling may cause misinformation 

that leads to unreliable decisions. Measurement drift can 

be caused by ageing of components or environmental 

changes. Re-calibration is therefore important to 

maintain reliable information for a control system. 

Soft sensors have always some error in their estimates 

or predictions. This error consists of modeling error and 

the quality of process measurements their model is 

based on. Similarly, physical sensors may perform 

acceptable at some defined measurement range, 

however their error can grow drastically when moving 

outside this working range. 

Laboratory measurements are rarely used in 

automated control but can work as a basis for evaluating 

reliable process operation and for validating process 

measurements, as well building soft sensors. They are 

used as a basis for reliable decision making in many 

industrial processes. Sampling can induce large errors or 

variation in results if done improperly and 

inconsistently. Sample preparation and analysis should 

be done according to previously validated standard 

procedure to ensure the quality of data.  

Intelligent measurement devices can detect if their 

data is reliable and possibly self-calibrate or 

alternatively alert the process operator or maintenance 

personnel. Modern automation system can include 

functionalities for detecting unreliable measurements 

and this is important aspect to consider when 

implementing digital twin. It is preferable to associate 

the information of the measurement quality with the 

measurement value for any kind of modeling and 

decision support. 

3 Quality of measurements 

Reliable measurement information is a prerequisite for 

the successful model adaptation. This requires online 

measurement quality monitoring. Unfit measurements 

can be removed or replaced. There are several methods 

for detecting differing measurement errors presented in 

chapter 3.1. If gross errors (Human mistakes, 

measurement errors, etc.) are also present in the process 

 

 
Figure 1. The concept for adaptation of industrial digital twin.  
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data, they must be identified and removed before data 

reconciliation (Sánchez et al., 2002). 

Intelligent measurement devices with vast amount of 

data and real-time data processing demands require 

automated quality assurance (QA) and quality control 

(QC) methods. (Campbell et al., 2013; Morello et al., 

2014) A high performance control system includes 

automatic quality control algorithms and a 

comprehensive flagging system to indicate data quality 

level, to identify errors, to highlight corrected values, 

and to make it easier for data users to identify suspicious 

and erroneous data, namely to make quality control 

more efficient and closer to real-time. (Vejen et al., 

2002) 

3.1 Gross error detection & identification  

Measurement drift is a typical for phenomenon related 

to industrial measurements where bias between true and 

measured values is evolving during long period of time. 

Baena-Garcı́a et al. (2005) presented two methods for 

drift detection; Drift detection method uses binomial 

distribution to calculate the number of errors. On the 

other hand, early drift detection method considers the 

distance between two errors classification instead of 

considering only the number of errors.  

Nishida and Yamauchi (2007) considers previous 

methods and presents new more noise resilient option 

which works for sudden concept shifts and gradual 

changes. They continued their work in (Nishida and 

Yamauchi, 2009) and presented learning system that 

uses multiple online classifiers that can predict changes. 

In Dries and Rückert (2009), six methods for online 

concept drift detection were evaluated and three 

approaches that can detect data drift reliably were 

presented. Finally, different gross error detection & 

identification (GEDI) methods, based e.g. in Mean 

squared error (MSE), root mean squared errors (RMSE), 

correlation coefficient based methods etc. are presented 

in (Kadlec et al., 2011). 

3.2 Quality flagging 

QA and QC procedures are closely related, but each has 

a distinct meaning. QA is a process of data profiling to 

discover inconsistencies and other anomalies in the data 

and performing data processing to improve the data 

quality. On the other hand, the QC process decides 

whether data meet the requirements for quality outlined 

by the end users. Hereby, QA can be considered a 

proactive or preventive process to avoid problems and 

QC as a process to identify and flag suspect data after 

they have been generated. (Campbell et al., 2013; 

Scully-Allison et al., 2018) 

The QC procedures can be applied at various stages 

of data flow from sensors to the end user and can be 

carried out by numerous methods. Observations can be 
flagged by several methods and various symbols and 

names can be used to indicate the quality control level. 

It is difficult to develop common guidelines for QC and 

flagging procedures that are applicable in all 

circumstances and so there are no universal standards, 

but they are specific to the type of the data, application 

and the location at which data is collected. (Campbell et 

al., 2013; Vejen et al., 2002). Hence, several QC 

methods for automatic tests have been reported (Vejen 

et al. 2002; Scully-Allison et al. 2018; Geuder et al., 

2015; Lewis et al., 2018) 

In addition to the simple and traditional QC 

procedures, methods utilizing machine-learning have 

also been developed. These methods represent a data-

driven approach to QC, wherein statistical models or 

classifiers are trained using empirical data collected 

from sensors. Hence, little knowledge is required about 

the device hardware or the phenomena being measured. 

On the other hand, adequate amount of data that contains 

the examples of faulty and correct data for model 

training and validation is required. Artificial neural 

networks, support vector machines, decision trees, and 

probabilistic models among others are commonly 

utilized as machine-learning approaches (Kadlec et al., 

2011; Campbell et al., 2013; McNutt et al., 2019) but 

also hybrid systems, for example combining QC flags 

and a fuzzy logic, are developed (Morello et al., 2014). 

Defective or missing data are unavoidable and 

require decisions how to process the faulty data: should 

the erroneous values to be removed, adjusted, replaced 

with an estimated value (e.g. soft sensor) or ignored. 

Great care must be taken to ensure that all processing 

steps are well documented so that they can be evaluated. 

The raw unmanipulated data should also always be 

saved. The uncertainties may arise from missing data 

and for instance using the wrong methods to fill the 

gaps. In a quality control procedure, all invalid data 

should be marked, but it is essential to ensure that valid 

data are not marked or removed, for example when a 

real but rare and extreme value outside the expected 

range occurs. In device self-diagnostics one difficulty 

that often arises is in differentiating between normal 

deviations and component faults. 

Uncertainty techniques can be applied to measure the 

impact of faults on measurement quality, which makes 

it possible in certain circumstances to continue to use a 

sensor after it has developed a fault. Setting QA/QC 

tolerances to minimize false detections is difficult, 

especially under changing conditions. Moreover, the 

values of many parameters are site-dependent. In many 

cases, too many or too few events may be detected and 

therefore, the results of automatic screening demand a 

manual check of an expert to ensure the validity. Expert 

knowledge and analyzing the circumstances under 

which false errors occur provides information that can 

be used to adjust the QC procedure and achieve more 

optimal performance. (Campbell et al., 2013; Geuder et 

al., 2015) 
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3.3 Data reconciliation 

One possibility to monitor the quality of measurements 

is based on data reconciliation. Data reconciliation also 

offers means to correct or replace the erroneous and 

missing measurements. (Vasebi et al., 2014) 

The main idea of data reconciliation is to adjust the 

measurements data to satisfy the mass, energy, or 

momentum balance equations. Steady-state data 

reconciliation is solved as an optimization problem, 

where the objective is to minimize the difference 

between the measured variables and the adjusted ones, 

weighted by the reciprocal of the variance. Objective 

function can be e.g. weighted least squares function 

(WLS). (Vasebi et al., 2014) 

4 Adaptation 

In real systems, the actual model parameters are not 

known. Hence, the whole adaptation (model 

performance evaluation) can only be dependent on the 

modeling error, making the adaptation prone also to the 

measurement errors mentioned in the previous Section. 

Therefore, the adaptation should preferably utilize the 

uncertainty estimates and quality flags of the 

measurements. In addition, the adaptation framework 

needs to consider when the adaptation is needed, how to 

cope with varying data quality and how to make the 

trade-off between the adaptation accuracy, stability, and 

computational load. 

4.1 Triggering 

The adaptation algorithm can be run consistently or 

there can be predetermined threshold based on the 

estimation error. The regular adaptation interval can be 

determined based, for example, on the minimum process 

delay or maximum sampling interval of the relevant 

measurements.  

The thresholds for infrequent adaptation can be 

calculated between the actual process measurements 

and the model output values representing the 

measurements. Methods for triggering should be chosen 

according to case. For example, (Palomo et al., 1991) 

mentions residual analysis, variance distribution and 

coherency-based methods among others. Also, in this 

case, the quality information of the measurements can 

be utilized to guide the triggering. 

4.2 Optimization methods 

There is a vast amount of optimization methods. On the 

other hand, it has been stated that there is a lack of a 

single solver that can overperformance the others in 

variety of optimization problems (Rios and Sahinidis, 

2013). The performance of solvers is strongly dependent 

on the problem dimensionality and non-smoothness of 

the function and bounds on the variables. 

In typical engineering problems, the global optimum 

is a solution that outperforms its alternatives after a 

fixed number of cost function evaluations. It has been 

shown that the metaheuristic methods can overperform 

the deterministic methods especially with small budgets 

(Sergeyev et al., 2018). On the other hand, the 

deterministic methods have provable convergence 

abilities to any optimization problems with an unlimited 

budget, but metaheuristic method may not be able to 

find the global optimum despite increased budget. 

(Sergeyev et al., 2018) 

One well-known metaheuristic (stochastic) 

optimization method is the Differential Evolution (DE) 

(Storn and Price, 1997). Its implementation is 

sufficiently straightforward, and DE has only several 

hyperparameters to tune the algorithm. DE is utilized in 

the adaptation examples in this paper, also since 

calculations proceed with real numbers. The 

optimization method selection was done in the previous 

study (Ohenoja et al., 2018). 

4.3 Selection of model parameters and outputs 

In large-scale processes and simulation models, the 

number of adjustable model parameters, together with 

number of possible measurements (model outputs) gets 

high and the optimization problem becomes too 

complex. It is important to be able to focus to the most 

relevant parameters and measurements to decrease the 

problem dimensions. Naturally, expert knowledge is 

needed to perform the selection of parameters and 

measurements to the model adaptation. 

Systematic approach to reach a smaller subset of 

possible parameters and measurements could involve 

sensitivity analysis tools. In local sensitivity analysis 

(LSA), one individual model parameter is changed at the 

time and the effect to model outputs observed. However, 

this approach cannot account for parameter interactions. 

Global sensitivity analysis (GSA) for estimating input 

parameter effects on different process outputs can use, 

for example, Sobol method (Sobol′, 2001). It is based on 

variability observed from Monte Carlo simulation and 

therefore large-scale system may require extensive 

computational cost. 

4.4 Cost function selection  

In model adaptation the objective is to match the model 

outputs with real measurements. Hence, an intuitive 

selection of the cost function is the sum of output 

measurement errors. However, the cost function 

typically contains measurement values with totally 

different ranges and the measurements that have largest 

error, will define the model parameters that are 

preferred/overweighed in the adaptation. Therefore, the 

first requirement is to normalize the values from the data 

sources to compensate the different absolute values. 

Secondly, the adaptation performance can be 

improved by weighting certain measurements according 

to their importance to selected model input parameters. 
The weighting can be based, for example, on expert 

knowledge or systematic testing of model parameter 

sensitivities. 
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Finally, the adaptation framework for an industrial 

digital twin discussed in this paper indicates that the 

quality information connected to measurements should 

also be utilized in the cost function formulation. The 

cost function measurement weighting can be changed 

accordingly if quality flagging describes measurement 

as unreliable. Alternatively, this unreliable 

measurement can be replaced with soft sensor if 

available. 

4.5 Hyperparameters 

The selection of hyperparameters of the optimization 

method is crucial for its convergence and computational 

performance. Some rule of thumbs exists for different 

optimization methods, but typically the selection is 

based on experience and intensive off-line testing. In 

some scenarios, it would be beneficial to automatically 

change these algorithm tuning parameters to 

compensate decreased data quality or when the 

optimization performance drops noticeably. In the case 

of DE, it can be done using the method itself for this 

task. First loop optimizes the model parameters and the 

second loop finds the best model parameters for the task. 

(Chachuat et al., 2009) 

5 Illustrative simulation examples 

5.1 Simulation model 

Industrial Penicillin Simulator (IndPenSim) is a 

MATLAB® based model for industrial-scale 

biopharmaceutical penicillin fermentation simulation. 

IndPenSim constitutes of several m-files providing their 

own function for the simulator. This program is intended 

to be a benchmark simulator for researchers to compare 

and validate new controllers in the batch fermentation 

process. It also includes Raman spectroscopy simulation 

that can be used for advanced process control design. It 

has fault generation capability built-in so it can be used 

for testing fault detection algorithms and for process 

fault identification. (Goldrick et al., 2019; 2015) 
This paper uses a modified version of the simulator. 

Measurement noise and random variations were 

removed to move towards deterministic model. This 

serves our purpose of testing adaptation algorithm with 

adaptive cost function. The effect of random noise and 

measurement faults will be studied in the future after we 

understand how this algorithm performs in optimal 

conditions. 

The IndPenSim includes 105 model parameters in 

total and 67 model outputs. The number of model 

outputs were decreased to 17 based on expert 

knowledge. The use of expert knowledge here refers to 

consideration of which of those model outputs could be 

measured directly or indirectly in real-time without 

discontinuous laboratory sampling. The model 

parameters were narrowed down to six by using LSA. 

The system of six inputs and 17 outputs was then 

utilized in model adaptation and it was also executable 

for GSA. 

5.2 Example with weighted objective function 

This example aims to illustrate the effect of 

measurement weighting in the objective function (OF) 

of model adaptation. GSA was used to generate 

weighting factors for model outputs which represent 

different process measurements. Fractional sensitivity 

indices between the different model parameters and 

outputs were added up to form the weighting coefficient 

for each output. In the other scenario, all measurements 

were equally weighted. 

The real process in this text refers to modeling results 

gained by a reference simulation with altered model 

parameters. Nominal model input parameters are used 

to represent the state of the digital twin to be adapted. 

The model input parameters are changed by 5% upwards 

to represent changed operating conditions of the real 

process. Adaptation algorithm is then used to find these 

new values using the error between process output 

measurements and model outputs.  

Adaptation algorithm, realized with DE, compares 

the model output values from the simulated process to 

values received from different DE trials and starts to 

adapt the designated model parameters in an iterative 

way. Adaptation stops when maximum number of 

iterations is reached or if the cost function value reaches 

the predetermined threshold value (0.001), which relates 

to the total relative modelling error of 0.1%.  

The cost function combines total relative difference 

between 17 model outputs and process measurements. 

The total error is a sum from a simulation period of 1150 

samples. Adaptation performance is inspected using 

cumulative and dynamic output errors. In addition to 

model outputs, the adapted model parameter errors to 

known values are inspected (although not relevant in 

industrial implementations).  

Preliminary work for this study includes selecting 

optimal adaptation window for minimizing the delay 

between adaptation cycles, while still maintaining a 

good performance. It was determined that 200 

datapoints was enough to maintain good performance. 

The results are presented in Figure 2 and Figure 3. 

Weighted OF lowers the total error in almost every 

measurement compared to nominal OF in Figure 2. 

Measurements with larger error compared to nominal 

OF have only small rise in total error while ‘NH3’, 

‘PAA’, ‘a3’, ‘a4’, and ‘S’ have significant drops in total 

error. The total error with weighted OF is only 39% 

from the total error with nominal OF. The total error is 

still mainly influenced by single model output errors 

peaking at certain points of a batch process. Overall, all 

the measurements stay below the generally acceptable 

5% error limit for the soft sensors, which indicates that 

the adaptation was successful. 
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According to results in Figure 3, the model 

parameters 'ratio_mu_e_mu_b' and 'K_diff' are the only 

ones to have larger error with weighted OF than with 

nominal OF. 'Y_PAA_P' has very large drop in error 

after measurement weighting. 

 
Figure 2. Total measurement errors between the model 

outputs and simulated process measurements using 

nominal and weighted output functions. The total error is 

a sum from a simulation period of 1150 samples. 

 

 
Figure 3. Model input parameter errors with nominal and 

weighted output functions. 

 

5.3 Example with missing measurement 

Adaptation performance is strongly dependent on the 

quality of measurement information. Loss of vital 
measurement information increases the adaptation error 

to a level where model is unreliable. This highlights the 

need for measurement quality monitoring and flagging. 

Adaptation robustness can be increased by 

implementing soft sensors that can be used to replace 

missing or faulty measurements.  

Such a scenario is simulated here, where a vital 

measurement ‘a0’ is missing and replaced with a soft 

sensor. The soft sensor performs somewhat worse than 

the original measurement, as depicted in Figure 4. 

 

 
Figure 4. The comparison for soft sensor and real 

measurement in a0 value. The x-axis presents 200 

samples with 12-minute sampling interval. 

 

The adaptation result is presented in Figure 5. The 

missing measurement increases the output error 

tremendously. By replacing the missing measurement 

with a soft sensor, the adaptation performance can be 

maintained and the total errors in the model outputs can 

be noticeably decreases. Large errors in ‘a3’ and ‘a4’ are 

caused by the differences in measurement dynamics 

between the soft sensor and the real measurement. 

 

 
Figure 5. The effect of missing measurement information 

to adaptation performance. 
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6 Discussion and conclusions 

The simulated results with modified IndPenSim are 

deterministic to some extent to be suitable for controlled 

testing of our adaptation framework. These results 

revealed the applicability of our LSA/GSA based 

approach for selecting the set of adapted model 

parameters and using GSA results for measurement 

weighting.  

It was also depicted that the adaptation can be very 

dependent on a single measurement. This emphasize the 

importance of the reliable measurement information and 

real-time quality monitoring. Robustness can be 

improved by implementing data reconciliation and soft 

sensors to replace unreliable or missing measurements.  

Work will continue with testing the adaptation with 

different measurement errors and by efficiently 

combining the measurement QA/QC information to 

model adaptation. The adaptation framework will also 

be stressed in mineral processing simulation models that 

represent real life process in Oulu Mining School 

enrichment pilot plant. 
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