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Abstract
An experimental setup simulating real-time wood

cladding coating monitoring of nozzle conditions and

spray paint properties has been investigated. This

approach is based on affixed nozzle accelerometer

sensors with appropriate signal conditioning and

chemometric data analysis (PCA). The aim was to

develop effective visualization of different process

states using PCA score plots. The present feasibility

study shows that this approach can be used as a basis for

further development towards a Process Analytical

Technology (PAT) spray monitoring system able to

work in the harsh environment of an industrial wood

cladding paint box. However, there is still a significant

amount of on-site industrial calibration and R&D

necessary before a final method validation can be

executed. The present results rely on permanently

affixed PAT sensors. Further studies will a.o. focus on

the degree to which replacement of acoustic

accelerometer sensors necessitates recalibration of the

multivariate data models employed, which is a critical

success factor in industrial implementations.

Keywords: process analytical technology, PAT,

multivariate data analysis, accelerometer, principal
component analysis, process monitoring, nozzle spray

condition, statistical quality control

1 Introduction

Wood has been the common façade material in

Scandinavia for centuries and industrial application of

exterior coatings has been markedly increasing. While

quality control in the cladding industry is still mainly

carried out manually, automated in-line measurements

are on the rise to secure greater consistency and improve

quality and productivity (Hundhausen et al., 2016).

Development of an on- and in-line quality control

system at one of Europe’s largest coating plants for

cladding is addressed in an ongoing R&D project termed

“KonTre” (Kontre). By analysis of data from many

sensors located at critical stages in the full production

line, necessary input/output data can be obtained for

multivariate calibration and model predictions, which

are essential for continuous process and product

optimization. The control of the coating application is of

overall importance as the film thickness is positively

correlated to the product quality in terms of the coating’s 

service life and, thus, the maintenance interval of a 

building façade (Grüll et al., 2014).  

Regarding process yield, an instantaneous detection 

of spraying defects is crucial particularly in view of high 

feed speeds of up to 200 m/min in industrial coating of 

cladding (Hundhausen et al., 2018). While abrupt 

failures like full clogging are easy to detect, gradual 

changes like nozzle wear, i.e. erosion of nozzle orifices, 

are not.  

Acoustic chemometrics (Halstensen et al., 1998; 

2000; 2001; 2006; 2010; Esbensen et al., 1998; 1999; 

Bakeev et al., 2010; Ihunegbo et al., 2012; Arvoh et al., 

2012; Wagner et al., 2013) has proven to be a powerful 

tool for monitoring nozzles in various applications, such 

as characterization of liquid flow through an orifice 

plate nozzle. Also monitoring viscosity of anti-icing 

fluid used on aircrafts in below zero conditions has 

shown promising results (Halstensen et al., 2019). Its 

usability in wood coating processes has however not 

been investigated yet. 

The present study aimed to assess the feasibility of 

using an acoustic chemometrics approach to monitor the 

spray nozzle performance in industrial coating of wood 

cladding. This was done by addressing following 

research questions:  

1) Will the acoustic chemometrics approach, which 

includes Principal Component Analysis (PCA) 

(Esbensen and Swarbrick, 2018) and eventually Partial 

Least Squares regression (PLS-R), be able to extract 

useful information about nozzle orifice wear and 

clogging?  

2) Will the signal from the sensor still be representative 

for the spraying nozzle performance or need re-

calibration after replacing a worn-out nozzle after 

typically ~1000 l of paint spraying?  

3) Will potential build-up of paint on the spraying 

nozzle and sensor affect the measurement adversely?  

4) Will the method be sensitive to the paint type or can 

a global multivariate model be used to monitor the 

process independently of the paint type?   
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2 Materials & methods 

2.1 Equipment 

Industrial conditions were simulated using an 

experimental coating line in the laboratory of the coating 

manufacturer Jotun AS in Sandefjord, Norway (Figure 

1). The test rig consisted of a conveyer belt for the wood, 

an optical sensor that activates spraying, a spray 

chamber with an airless spraying nozzle, a water supply 

unit, paint hopper, pressure gauge, pump, paint mixer, 

paint cooling unit, hose pipe, and a handheld 

thermometer.  The installed PAT hardware was an 

acoustic sensor (accelerometer) Bruel and Kjær model 

4519, Signal Amplifier Module (SAM) developed at the 

University of South-Eastern Norway, a data acquisition 

device USB-6363 from National Instruments and a 

standard laptop computer. The software used was 

LabVIEW (version 2019, NI, Austin, Texas, USA), 

Unscrambler X (version 10.3, Camo Analytics AS, 

Oslo, Norway). 

 

2.2 Experimental design 

A full factorial design (Esbensen and Swarbrick, 2018) 

was employed comprising 64 experiments: 

 

ℎ𝑛 ∙ 𝑎 = 𝑛     (1) 

 

where h (levels) = 2, n (factors) = 4, a (paints) = 4 and  

n = the number of experiments. 

The four different paints from Jotun AS (Sandefjord, 

Norway) were water emulsions based on two different 

binders, Jotun Industri Opaque Primer and Jotun 

Industri Grunning Visir, and the topcoat Jotun Industri  

 
 

 

 

 

 

Optimal in two different bases ( 

Table 1). The paints of Base A are bright due to a high 

content of titanium dioxide (TiO2), those of Base C are 

dark. 

Table 1. The four different paints used in the experimental 

design. 

Paint 

Name 

Type Binder Base Titanium 

content 

[%] 

Solid 

content 

[vol%] 

Specific 

gravity 

Opaque(1)  Primer alkyd A 16 46±2 1.45 

Visir(2) Primer alkyd C 0 36±2 1.04 

Optimal(3) Topcoat acrylic A 16 40±2 1.25 

Optimal(4) Topcoat acrylic C 0 40±2 1.25 

 

The four factors were 1) paint temperature, 2) pump 

pressure (paint flowrate), 3) nozzle size, and 4) nozzle 

condition in terms of partly clogged or free flow. 

The influence of the paint temperature on the acoustic 

signal was tested on two levels (Table 2). The 

temperature levels were measured with a handheld 

infrared thermometer.  

Table 2. Levels for the factor temperature of the four 

different paints in  

Table 1. 

Paint type High Low 

Paint 1 21 ⁰C 8 ⁰C 

Paint 2 20.8 ⁰C 9.6 ⁰C 

Paint 3 20 ⁰C 7.1 ⁰C 

Paint 4 20 ⁰C 7.5 ⁰C 

 

The specific pump pressures (factor 2) applied for each 

paint were 0.4 and 0.3 bar. The orifice diameter of the 

nozzles (factor 3) were 0.025 inch (0.635 mm) and 0.019 

inch (0.483 mm), respectively. The two nozzle sizes 

(factor 3) were tested under clogged and open conditions 

while other variables remained constant (high and low 

temperature, high and low pressure). Both nozzles had a 

spraying angle of 60°. 

Figure 1. Simplified illustration of the experimental spraying test rig equipped with an acoustic PAT-sensor. 
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The influence of the nozzle condition (factor 4) on the 

acoustic signal was studied on nozzles with a free flow 

and nozzles that were partly clogged. The latter was 

induced by forcefully inserting a wedge-shaped wood 

splinter in the nozzle opening (Figure 2). As this was 

done manually, the clogging conditions were not 

identical in all experiments. In the eleventh 

measurement, the clogging material fell out towards the 

last part of the experiment, conveniently simulating a 

transient clogging situation. 

 

 

  

Figure 2. Upper: Spraying nozzle assembly with 

accelerometer. Lower: Disturbed spray pattern from a 

partly clogged nozzle. 

 
Each paint type was mixed thoroughly in the paint mixer 

to achieve homogeneity. The paint was transferred to the 

hopper, ready to be pumped through the rig (Figure 1). 

Before applying a new paint (Table 1), hosepipes a.o. 

parts were rinsed with high-pressure water.  

The temperature of the paint was measured manually 

with a handheld thermometer before it was pumped into 

the hopper in the test rig. 

Once the optical sensor mounted on the conveyor belt 

detected a wood board, the nozzle started to spray paint, 

and the acoustic sensor started to capture the 

measurement signal in each test, 100 acoustic spectra 

were captured and then converted to one spectrum to get 

a precise measurement. This was repeated 5 times to 

give 5 replicates, which was saved on the computer. At 

the end of each experimental run, the used paint was 

transferred into the waste container. 

 

2.3 Acoustic chemometrics 

Figure 3 shows the acoustic chemometric signal path 

involved in acquiring vibrational signals from the active 

nozzle and their subsequent signal processing.  

 

 

Figure 3. Block diagram of processes involved in 

acquiring vibrational signal from active spraying nozzles. 

The acoustic sensor used is a piezoelectric shear 

accelerometer type 4518. In general, this type of PAT 

sensor is used for vibration monitoring, modal and 

structural analyses. Four different piezoelectric 

accelerometers were used for different experimental 

tests, which are discussed in the later sections. The 

piezoelectric sensor generates an electric charge signal 

proportional to the vibration acceleration due to the flow 

of paint through the nozzle bore and its sudden 

depressurized spraying action upon leaving the bore 

orifice.  

The electric signal is produced when the inbuilt 

crystal material is subjected to a shear force. When the 

mass attached on the crystal material experiences a 

vibration, it causes the piezoelectric crystal to stretch 

and rebound, thereby generating opposite charges that 

are transmitted as an electric signal. The piezoelectric 

sensor has an inbuilt amplifier that converts the output 

charges into a low-impedance voltage signal between 1 

and 100 mV. The sensor has a high resistance to base 

bending and a high response frequency range > 20 Hz, 

and can also withstand temperature changes between -

51 and 121°C. Its low impedance output characteristic 

leads to low operating voltage, making it more 

economical and safer for use. It has low resistivity, i.e. 

any small signal can be detected and transmitted. Its 

output impedance < 100 Ω. The other end of the sensor 

cable was connected to the input channel port on the 

Signal Amplifier Module (SAM). 

The SAM amplifies the signal from the acoustic 

sensor (1 – 100 mV) in order to use the entire input range 

which is ±10 V. Having a large signal range will 

guarantee maximum digital resolution in the following 
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analog-to-digital converter. When the signal is 

amplified, the signal amplitude obtained is about ±5 V, 

which will then flow to the DAQ unit. 

The USB 6363 data acquisition (DAQ) data acquisition 

hardware is used to acquire a signal (like analog, digital, 

etc.) from a sensor into a laptop. It is capable of handling 

analog to digital signal conversion, A/D. Since the 

signal from SAM is accessed in the computer, the SAM 

signals must be converted from analog to digital format. 

The DAQ 6363 has a 16 bits resolution (i.e. the 

smallest change the unit can measure). Its maximum 

sampling frequency (how fast sampling is done) rate is 

2 MHz. The vibration frequency is between 0 – 100 kHz. 

Thus, the sampling rate used in this work is 200 kHz to 

satisfy Shannon’s sampling theorem. The configuration 

of this unit was carried out in LabVIEW. 

The most important signal processing steps involved 

is shown in Figure 4, where a time series of 4096 

samples corresponding to 0.02 sec is recorded from the 

accelerometer. The time series is then multiplied with a 

Blackman Harris window (Ifeachor and Jervis 1993)  

canceling out the signal towards the ends of the series to 

prevent spectral leakage. The final step is the Discrete 

Fourier Transform (DFT) that is used to transform the 

time domain signal into the frequency domain. The DFT 

can be expressed as  

 

𝑋𝑘 = ∑ 𝑥𝑛𝑒
−𝑖2𝜋𝑘𝑛/𝑁𝑁−1

𝑛=0    𝑘 = 0,… ,𝑁 − 1    (2) 

 

A more efficient implementation of the DFT is the Fast 

Fourier Transform (FFT) (Ifeachor and Jervis, 1993) 

which in this work has been implemented in LabVIEW 

2017 for fast real time calculation of the Fourier 

spectrum. Figure 4 shows a part of the LabVIEW GUI 

where the time series (4096 samples) is shown on top, 

and the FFT spectrum below. This spectrum represents 

the vibration signal in the pertinent time interval; it can 

be viewed as a “spectral fingerprint” of the state of the 

Normal Operating Conditions (NOC) of the nozzle 

while at work.  

 

 
Figure 4. Top: time domain signal indicated with a red 

arrow, Bottom: derived frequency domain (FFT) 

spectrum. This spectral fingerprint is used directly in the 

multivariate calibration of a state prediction model (see 

text).  

2.4 Principal component analysis 

Principal component analysis (PCA) is a standard 

multivariate data analysis method (Esbensen and 

Swarbrick, 2018; Martens and Næs, 1989). It uses an 

orthogonal transformation to convert a set of 

observations often described by many correlated 

variables into a few linearly uncorrelated latent 

variables called principal components. We used the 

chemometric iterative NIPALS algorithm. Principal 

component analysis can alternatively be carried out 

based on singular value decomposition (SVD). The 

advantage of using SVD is that the code is simple, the 

disadvantage is that all possible components are always 

calculated, i.e., if X is large (i,e, is made up of  a high 

number of variables), SVD is time consuming. NIPALS 

is slightly more complex to program, but a major 

advantage is that it allows to define the number of 

components to calculate.  Thus, it saves time if X has 

many samples and variables. NIPALS also works on 

matrices with missing values; in that case SVD will fail. 

NIPALS is the standard chemometric approach and has 

been described in full detail in a wealth of literature 

(Esbensen and Swarbrick, 2018; Martens and Næs, 

1989). 

A series of spectral fingerprints (observations) can 

be assembled into an X-matrix with the 2048 FFT 

spectral frequencies as variables.  

3 Results & discussion 

Below follows the relevant PCA score-plots delineating 

the degree of discriminability obtained from running 

experiments pertaining to various factors and levels. In 

all the score plots, the average acoustic spectrum is 

shown to have a common reference point for all the 

score plots. For simplicity, only the results for paint 1 

are shown for the investigations on the effect of the paint 

temperature, pressure and nozzle state (new, worn, 

clogged). The other paint types show similar results. 

 

3.1 The effect of paint temperature 

Figure 5 shows the score plot t1-t2 of the acoustic 

measurement at different temperatures. The baseline is 

indicated as “Average” while the low and high 

temperatures applied in the different groups of samples 

are labelled “Low Temp” and “High Temp”, 

respectively. The groups are clearly separated, showing 

that the nozzle vibrations depend on the temperature. 

Both groups of samples lie to the right side of the base 

group, which suggests that the amplitude increases due 

to the flow through the nozzle. PC2 holds the 

information of the two sample groups with different 

temperature as their separation is mainly in the PC2 

direction. 
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Figure 5. The effect of a temperature change, from top to 

bottom: Scores t1-t2, Loading 1, Loading 2 

 

 

3.2 The effect of pump pressure 

Figure 6 shows the score plot t1-t2 of the acoustic 

measurement at two different spraying pressures 

(high/low). Like for the effect of paint temperature, the 

baseline is also here indicated as “Average” while the 

low and high pressures are labelled “Low Pressure” and 

“High Pressure”, respectively.  

The groups are clearly separated, which indicates that 

the nozzle vibration depends on the paint pressure. Like 

in the score plot for the paint temperature, both groups 

of samples lie to the right side of the base group, 

indicating an increase in the amplitude due to the flow 

through the nozzle. PC2 holds the information of the two 

sample groups with different pressure as their separation 

is mainly in the PC2 direction. 

 

 
Figure 6. The effect of a change in pressure, from top to 

bottom: Scores t1-t2, Loading 1, Loading 2 

 

 

3.3 The effect of nozzle wear 

It is of high interest to monitor the state of a spraying 

nozzle as a worn nozzle changes the spray pattern. This 

can increase the loss of paint due to overspray and/or 

cause spraying defects. A new nozzle will typically last 

for 800 to 1500 liters of paint depending on spraying 

conditions and the paint type.  

In Figure 7, two different nozzle conditions (new and 

worn) are shown in the score plot t1-t2 of the acoustic 

measurements. Like in Figure 5 and 6, the baseline is 

indicated as “Average” while the condition of the nozzle 

is indicated “new” and “worn”.  

The different location of the groups in the score plot 

indicates that the nozzle vibration depends on nozzle 

wear. The results are promising for the possibility of 

online monitoring of the nozzle state. A new nozzle will 

start with a negative score in the PC2 direction and 

slowly move to the direction of a positive score. 
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Figure 7. The effect of a nozzle wearing out, from top to 

bottom: Scores t1-t2, Loading 1, Loading 2 

 

 

3.4 The effect of clogging 

Another important aspect of process monitoring is the 

immediate detection of nozzle clogging because it 

causes coating defects and thus production loss. Figure 

8 shows the results of a new and a worn nozzle in 

clogged and unclogged condition. Like in Fig. 7, the 

scores of a new and a worn nozzle in normal operation 

are clearly distinguishable from each other. The 

difference between scores of a clogged and an 

unclogged nozzle is even larger and allows an easy 

detection.  

From these PCA results, there is a clear indication 

that the acoustic chemometric approach present the 

critical information needed to monitor the quality of 

paint spray evenness and nozzle condition during wood 

cladding. 

 

3.5 The effect of paint type 

Figure 9 shows the score plot t1-t2 of all four paint 

types, all the other variables such as temperature and 

pressure were kept constant. The score plot results 

suggest a clear influence of the paint type on the nozzle 

vibration. Paint 1 has the highest score along PC1, 

which indicates that this paint produces the highest 

sound amplitude. This can be probably ascribed to the 

high solid content and specific gravity of paint type 1 of 

46 vol% and 1.45, respectively (Table 1). 

 

 
Figure 8. The effect of a clogged paint nozzle, from top to 

bottom Scores t1-t2, Loading 1, Loading 2 

 

  

 
Figure 9. The effect of changing paint type, from top to 

bottom Scores t1-t2, Loading 1, Loading 2 
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4 Conclusion 

The experimental setup based on accelerometer sensors 

with appropriate signal conditioning a.o. allows 

effective visualization of the different process states for 

different paints and working conditions using PCA 

score plots.   

The present feasibility study shows the potential of our 

acoustic chemometric approach for the development of 

an industrial PAT paint spray monitoring system for 

wood coatings. However, there is a significant amount 

of on-site industrial calibration R&D necessary before a 

final method validation can be undertaken. The next 

steps will be to assess the technology in the harsh 

industrial environment of a coating plant for wood 

cladding. The present results rely on permanently 

affixed PAT sensors. Further studies will a.o. focus on 

the degree to which replacement of acoustic 

accelerometer sensors necessitate re-calibration of the 

multivariate data models employed – a critical issue for 

industrial implementation of acoustic chemometrics. 

Finally, the applicability of acoustic chemometrics to 

other coating types and finishing processes than 

cladding, such as furniture, windows or flooring should 

be assessed. 
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