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Abstract 
 

The main purpose of this work has been to fit simulated 

models to performance data from Test Centre Mongstad 

(TCM), and evaluate whether fitted parameters for one 

scenario (a set of experimental data at specified 

conditions) give reasonable predictions at other 

conditions.  Five scenarios from the amine based CO2 

absorption process at TCM have been simulated in a 

rate-based model in Aspen Plus and an equilibrium 

based model in Aspen HYSYS and Aspen Plus.  It was 

evaluated whether a fitted interfacial area (for the rate-

based model) or an EM-profile (Murphree efficiency on 

each of 24 stages for the equilibrium based model) gave 

a good prediction of CO2 removal rate and temperature 

profile for other conditions.  An indication of the 

predictive performance of the rate-based model is that 

the interfacial area fitted to the different scenarios had 

to be varied between 0.29 and 1.0 to obtain the 

experimental CO2 removal efficiency.  Using a specific 

EM-profile was able to predict both the CO2 removal and 

the temperature profile for all the scenarios reasonably 

well.  An EM-factor multiplying all the EM values in an 

EM-profile from another scenario was fitted to values 

between 0.60 and 1.02 for all the scenarios. 
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1 Introduction 

 

The CO2 Technology Centre Mongstad (TCM) close to 

Bergen is the world’s largest test facility for CO2 capture 

technology. For testing of CO2 absorption into amine 

based solvents, there is an absorption column with a 

rectangular cross section equivalent to a packing 

diameter of 3 meter, and a packing height up to 24 

meter.  There have been performed performance tests of 

CO2 absorption from flue gas into 30 wt-% monoethanol 

amine (MEA) in 2013 (Thimsen et al., 2014; Hamborg 

et al., 2014) and in 2015 (Gjernes et al., 2017; Faramarzi 

et al., 2017).  Figure 1 shows the principle of the amine 

based CO2 absorption and also the desorption facility at 

TCM.  In this work, especially the total CO2 capture rate 

(in % of incoming CO2) in the absorption section and 

the temperature profile from top to bottom of the 

absorption section are the evaluated parameters. 

The first aim of this work is to compare results from 

simulations with performance data for CO2 absorption 

into 30 wt-% MEA at TCM using different simulation 

tools.  The second aim, which is specific for this work, 

is to test whether fitted parameters for one scenario (a 

set of experimental data at specified conditions) give 

reasonable predictions at other conditions.  The work is 

based on the Master Thesis of Sofie Fagerheim (2019) 

and on earlier work at the University of South-Eastern 

Norway. 

 

Figure 1. Simplified process diagram of the amine based CO2 capture plant at TCM (Thimsen et al., 2014) 
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In earlier work (Sætre, 2016; Røsvik, 2018; Øi et al., 

2018) the equilibrium models (in Aspen Plus and Aspen 

HYSYS) were fitted to one specific scenario by 

adjusting the Murphree efficiency (EM) for each stage, 

and the rate-based model (in Aspen Plus) was fitted to 

another scenario by adjusting the interfacial area factor.  

In literature there is very little research on predicting 

CO2 absorption with models fitted for other conditions.   

In this work, 5 sets of experimental data (scenarios) 

from the amine based CO2 capture process at TCM have 

been compared with simulations of different 

equilibrium based models and a rate-based model.  The 

EM-profile was then adjusted with an EM-factor in the 

other scenarios to achieve a good fit to the temperature 

profile. 

2 Process simulation tools and CO2 

absorption models 

 

There are several process simulation tools available for 

CO2 absorption processes.  The key content in these 

programs are models for vapour/liquid equilibrium 

calculations and efficient flow-sheet solvers.  Some of 

the programs (especially the programs with rate-based 

tools) also include models for chemical, heat transfer 

and mass transfer kinetics.  Commercially available 

programs are Aspen Plus, Aspen HYSYS, ProTreat, 

ProMax and ChemCad.  Some companies have internal 

programs, SINTEF use the program CO2SIM. 

 There are different equilibrium models used for the 

MEA/water/CO2 system describing the relations 

between the vapour and liquid phase at equilibrium.  

Aspen Plus has an Electrolyte-NRTL equilibrium model 

which is based on Austgen et al. (1989).  The new 

version of Aspen HYSYS has a new acid gas model.  

This work is mainly based on the earlier models in 

Aspen HYSYS which is based on the amine package 

with the Kent-Eisenberg (1976) and the Li-Mather 

(1994) equilibrium models.    

Aspen Plus has included rate-based models.  For CO2 

absorption, there are several models available for heat 

transfer, mass transfer and kinetics which can be 

included in a rate-based simulation.  A specific rate-

based example file for CO2 removal using MEA is 

available with the Aspen Plus program. The parameters 

in this file are mostly based on the work of Zhang et al. 

(2009) who fitted Aspen Plus simulations to 

experimental runs at a CO2 absorption pilot plant.  

Different rate-based models have been developed for 

TCM in the Master Thesis works of Larsen (2014), 

Desvignes (2015) and Sætre (2016). The gCCS program 

has been used for dynamic simulations at TCM (Bui et 

al., 2020).  

Equilibrium based absorption models are based on 

the assumption of equilibrium at each stage.  The model 

can be extended by using a Murphree efficiency (the 

ratio of the change in mole fraction from a stage to the 

next divided by the change assuming equilibrium).  An 

advantage using Murphree efficiencies compared to 

rate-based simulations is that it is simpler and fewer 

parameters have to be specified.  In the Master Thesis 

work of Zhu (2015), Sætre (2016) and Røsvik (2018), a 

Murphree efficiency for each stage (meter of packing) 

was estimated for one set (scenario) of TCM data 

(Hamborg et al., 2014). Zhu (2015) fitted a constant 

Murphree efficiency to 0.09 in Aspen HYSYS for all 

stages to obtain the experimental CO2 capture rate.  

Using different fitted Murphree efficiencies for each 

stage, good agreement between the measured and 

simulated temperature profile was also obtained. 

There are a few comparisons between different 

simulation tools for CO2 absorption in literature.  Luo et 

al. (2009) tested Aspen RadFrac, ProTreat, ProMax, 

Aspen RateSep, CHEMASIM from BASF and CO2SIM 

from SINTEF/NTNU by comparing with pilot plant 

data.  The result was that all models were capable of 

fitting the CO2 capture rate, but the temperature and 

concentration profiles were not well predicted.  When 

comparing Aspen HYSYS and Aspen Plus, Øi (2012) 

claimed that there were small differences between the 

tested equilibrium models, and that a rate-based and 

equilibrium based model with estimated Murphree 

efficiencies gave similar results.  In the work by Øi et al. 

(2018), different models were compared for 4 scenarios 

from TCM. The results showed that equilibrium and 

rate-based models perform equally well in both fitting 

performance data and in predicting performance at 

changed conditions. 

 

3 Data, Methods and Specifications  

3.1 Performance Data from TCM  

 

Performance data for this work have been taken from 5 

sets of conditions (scenarios) at TCM. They are from 

campaigns in 2013 and 2015 for approximately 30 wt-

% MEA in water. 24 meter of packing height (the 

maximum available) was used in these scenarios.   

The data (mainly conditions of the inlet gas stream 

and the inlet amine stream to the absorption section) for 

the 5 scenarios are listed in Table 1 to Table 5. Table 1 

to 4 are for the same conditions as in Øi et al. (2018).  

The data are from scenarios documented in Hamborg et 

al. (2014), Gjernes et al. (2017) and Faramarzi et al. 

(2017), but some of the data are converted to make them 

suitable for input to simulation programs. 

The 5 scenarios which have been selected in this 

work are named H14 and 6w from 2013 (Hamborg et 

al., 2014), 2B5 and Goal1 from 2015 (Gjernes et al., 

2017) and F17 from 2015 (Faramarzi et al., 2017).  The 

names have been used internally at TCM, except the 
H14 and F17 scenarios. The 5 scenarios were run with 

amine concentrations close to 30 wt-% MEA in water. 
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Table 1 Scenario H14 experimental input data for process 

simulations. 

Input data to the simulations 

Amine inlet   Flue gas inlet   
Flow rate [kg/h]  54900 Flow [kmol/h]  2022 

Temperature [°C]  36.5 Temperature [°C]  25.0 

MEA [mol%]  10.94 CO2 [mol%]  3.7 

H2O [mol%]  86.54 H2O [mol%]  2.95 

CO2 [mol%]  2.52 O2 [mol%]  13.6 

Pressure [bara]  1.0313 N2 [mol%]  79.75 

    Pressure [bara]  1.063 

 
Table 2 Scenario 6w experimental input data for process 

simulations. 

Input data to the simulations 

Amine inlet   Flue gas inlet   
Flow rate [kg/h]  54915 Flow [kmol/h]  2005 

Temperature [°C]  36.9 Temperature [°C]  25 

MEA [mol%]  11.13 CO2 [mol%]  3.57 

H2O [mol%]  86.37 H2O [mol%]  3.0 

CO2 [mol%]  2.5 O2 [mol%]  13.6 

Pressure [bara]  1.0313 N2 [mol%]  79.83 

    Pressure [bara]  1.063 

 
Table 3 Scenario 2B5 experimental input data for process 

simulations. 

Input data to the simulations 

Amine inlet   Flue gas inlet   
Flow rate [kg/h]  49485 Flow [kmol/h]  2022 

Temperature [°C]  36.8 Temperature [°C]  28.2 

MEA [mol%]  11.67 CO2 [mol%]  3.57 

H2O [mol%]  85.65 H2O [mol%]  3.7 

CO2 [mol%]  2.68 O2 [mol%]  14.6 

Pressure [bara]  1.0313 N2 [mol%]  78.08 

    Pressure [bara]  1.063 

 

Table 4 Scenario Goal1 experimental input data for 

process simulations. 

Input data to the simulations 

Amine inlet   Flue gas inlet   
Flow rate [kg/h]  44391 Flow [kmol/h]  2017 

Temperature [°C]  28.6 Temperature [°C]  25 

MEA [mol%]  12.04 CO2 [mol%]  3.62 

H2O [mol%]  85.19 H2O [mol%]  3.1 

CO2 [mol%]  2.77 O2 [mol%]  14.3 

Pressure [bara]  1.0313 N2 [mol%]  79 

    Pressure [bara]  1.063 

 
Table 5 Scenario F17 experimental input data for process 

simulations. 

Input data to the simulations 

Amine inlet   Flue gas inlet   
Flow rate [kg/h]  57434 Flow [kmol/h]  2558 

Temperature [°C]  37.0 Temperature [°C]  29.8 

MEA [mol%]  11.44 CO2 [mol%]  3.70 

H2O [mol%]  86.27 H2O [mol%]  3.70 

CO2 [mol%]  2.29 O2 [mol%]  14.60 

Pressure [bara]  1.0313 N2 [mol%]  78.00 

    Pressure [bara]  1.0100 

 

The results from the performance data scenarios to be 

compared with simulations, are the total CO2 capture 

rate and the temperature profile measured for every 

meter of the packing.  The temperature was measured at 

different locations for each meter of packing, and the 

different locations were named A, B, C and D.   
 

For the H14 and F17 scenario, a mean value for each 

meter of packing was specified in the temperature 

profile (Hamborg, 2014; Faramarzi 2017). 

 

3.2 Specifications for the Equilibrium 

Based Simulation Tools 
 

When using Aspen HYSYS, the Amine Package with 

the Kent-Eisenberg model was used with non-ideal 

vapor phase.  The Acid Gas model, which is the 

recommended equilibrium model in the last Aspen 

HYSYS version was used as a check.  When using 

Aspen Plus, the Electrolyte-NRTL (Non-Random-Two-

Liquid) model was used.  The figures in this work show 

only results from Aspen Plus.      

In the Master Thesis work of Zhu (2015), Sætre 

(2016) and Røsvik (2018) a Murphree efficiency for 

each of the 24 stages (meter of packing) was estimated 

for the TCM data set (Hamborg et al., 2014).  Different 

approaches for fitting the EM profile to the temperature 

profile was a constant EM for every stage (Zhu, 2015) 

and a linear Murphree efficiency profile (Øi, 2012). A 

high Murphree efficiency at the top stages and then 

gradually reduced to a constant equal to 0.01 (close to 

0) for the bottom stages fitted the temperature profile 

very well for the H14 scenario (Zhu, 2015; Sætre, 2017; 

Røsvik, 2018).  Fagerheim (2019) fitted two other EM 

profiles, SF1 and SF2 to the performance data. The SF1 

and SF2 profiles has EM = 0.01 on the 5 lowest stages 

compared to the Zhu profile which has EM = 0.01 on the 

10 lowest stages.  These profiles were specified in both 

the Aspen HYSYS and Aspen Plus simulation tool.  The 

different EM profiles used in this work are presented in 

Table 6. 

 

 
Table 6 Murphree efficienciy profiles used in this work 
 

Murphree efficienciy profiles in the packed column from top to bottom 

EM 0,1 Zhu Lin SF1 SF2 

1 0.1 0.2300 0.17 0,2450 0,2400 

2 0.1 0.2192 0.17 0,2425 0,2350 

3 0.1 0.2085 0.17 0,2400 0,2300 

4 0.1 0.1977 0.17 0,2375 0,2250 

5 0.1 0.1869 0.17 0,2350 0,2200 

6 0.1 0.1800 0.16 0,2325 0,2150 

7 0.1 0.1762 0.15 0,2300 0,2300 

8 0.1 0.1546 0.14 0,2000 0,2000 

9 0.1 0.1438 0.13 0,1700 0,1700 

10 0.1 0.1331 0.12 0,1400 0,1400 

11 0.1 0.1223 0.11 0,1100 0,1100 

12 0.1 0.1115 0.10 0,0800 0,0800 

13 0.1 0.1007 0.09 0,0500 0,0550 

14 0.1 0.0900 0.08 0,0475 0,0525 

15 0.1 0.0100 0.07 0,0450 0,0500 

16 0.1 0.0100 0.06 0,0425 0,0475 

17 0.1 0.0100 0.05 0,0400 0,0450 

18 0.1 0.0100 0.04 0,0375 0,0425 

19 0.1 0.0100 0.03 0,0350 0,0400 

20 0.1 0.0100 0.02 0,0001 0,0001 

21 0.1 0.0100 0.01 0,0001 0,0001 

22 0.1 0.0100 0.01 0,0001 0,0001 

23 0.1 0.0100 0.01 0,0001 0,0001 

24 0.1 0.0100 0.01 0,0001 0,0001 
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3.3 Specifications for the Rate-Based Tool 
 

The specifications in the rate-based Aspen Plus 

simulation tool at TCM have been developed during 

several years and different versions have been used 

(Larsen, 2014; Desvignes, 2015; Sætre 2016).  In this 

work, the same parameters as in Øi et al. (2018) were 

used.  Most of these specifications are based on the work 

by Zhang et al. (2009) where Aspen Plus rate-based 

simulations were fitted to pilot scale experiments of CO2 

absorption at the University of Texas.  Detailed 

documentation of the rate-based model can be found in 

the Aspen Plus program documentation. 

   

4 Results and discussion 

4.1 General Results 
 

The results shown for each model in the scenario figures 

are the capture rate and the temperature profile.  The 

model parameters (in the case of the rate-based model 

the interfacial area factor) are adjusted to achieve the 

specified capture rate.  In the case of using an EM profile, 

all the EM values were multiplied with an EM-factor 

which is the only parameter.   In some cases it was not 

possible to obtain the specified capture rate. In that case 

the parameter was adjusted to come as close as possible 

to the specified capture rate.  The emphasis in this work 

is on comparison of the temperature profiles. 

   

4.2 Scenario H14 
 

Comparisons between measured and simulated 

temperature profiles are shown in Figure 2.  In the 

figure, the number after each model is the EM-factor 

(adjusted to achieve the capture rate given in the 

parenthesis).  The broad solid line is representing the 

experimental data as an average of 4 measured 

temperatures at each stage.  The non-smooth form of the 

experimental line indicates that there is some 

uncertainty in the measurements.  

 

  

Figure 2. Comparison of plant data scenario H14 and 

simulated temperature profiles (Fagerheim, 2019). 

The model with constant EM overpredicts the 

temperature to a large degree in the lower part of the 

column.  The rate-based model (with interfacial area 

1.0) underpredicts the temperature.  The model with a 

linear EM profile gives a reasonable temperature profile.  

The adjusted EM profiles give the best fit.  This is as 

expected because all the EM values (24 parameters) are 

actually fitted to this scenario.  In the work of Øi et al. 

(2018), the rate-based model gave a temperature profile 

closer to the experimental line for the H14 scenario 

using Aspen HYSYS.  In that case, an interfacial area of 

0.55 was used, but this does not achieve the capture rate 

in the Aspen Plus simulations.  Even with an interfacial 

area factor of 1.0, the Aspen Plus simulations only 

achieved a capture rate slightly below the experimental 

value of 90 %.  The slight difference between the results 

using Aspen HYSYS and Aspen Plus, is probably due 

to different vapour/liquid equilibrium models.    

 

4.3 Scenario 6w 
 

Comparisons between measured and simulated 

temperature profiles are shown in Figure 3.  The 

experimental temperatures are shown in the figure, and 

the broad solid line shows the average.  It is clear that 

the uncertainty in the experimental temperatures are not 

negligible.  

 

Figure 3. Comparison of plant data scenario 6w and 

simulated temperature profiles (Fagerheim, 2019). 

 

In this scenario all the models except the constant EM 

model give reasonable temperature profiles.  In this 

case, the rate-based model overpredicts the temperature 

in the lower part of the column.  The interfacial area had 

to be adjusted to 0.29 to achieve the experimental 

capture rate.  The models with EM profiles fitted to the 

H14 scenario, had to be adjusted with factors from 0.60 

to 0.72 to obtain the experimental capture rate.    

 

4.4 Scenario 2B5 
 

Comparisons between measured and simulated 

temperature profiles are shown in Figure 4.  The figure 

shows a higher uncertainty in the experimental 

temperatures than the other scenarios.  
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Figure 4. Comparison of plant data scenario 2B5 and 

simulated temperature profiles (Fagerheim, 2019). 

 
As in the H14 scenario, the model with constant EM 

overpredicts the temperature in the lower part of the 

column and the rate-based model underpredicts the 

temperature.  The interfacial area in the rate-based 

model had to be adjusted to 1.0 to (almost) achieve the 

experimental capture rate. 

  The EM profile models give a good fit with an 

adjustment factor between 0.89 and 1.01.  The 

uncertainty in the data is too large to conclude which 

model is closest to the experimental data. 

   

 

4.5 Scenario Goal1  
 
Comparisons between measured and simulated 

temperature profiles are shown in Figure 5.  In this 

scenario all the models overpredicts the temperature in 

the middle of the column.  The rate-based model and the 

linear model overpredicts the temperature with about 10 

K.  The EM profile models overpredicts the temperature 

with less than about 3 K.  The interfacial area was 

adjusted to 0.51, while the other models were adjusted 

with factors between 0.90 and 1.02. 

  

 

 

Figure 5. Comparison of plant data scenario Goal1 and 

simulated temperature profiles (Fagerheim, 2019). 

 

 

4.6  Scenario F17  
 

Comparisons between measured and simulated 

temperature profiles are shown in Figure 6.  The broad 

solid line is representing the experimental data.  The 

experimental line which is smoother than in the earlier 

scenarios indicates that the experimental uncertainty is 

lower in the F17 scenario.  There is however an outlier 

in the experimental temperature on stage 14 in all the 

scenarios. The linear model is closest to the 

experimental data for this scenario.  The rate-based 

model overpredicts the temperature slightly in the 

middle part of the column.   

 

 

Figure 6. Comparison of plant data scenario F17 and 

simulated temperature profiles (Fagerheim, 2019). 

 
The EM models underpredicts the temperature with up to 

3 K in the lower part of the column.  The interfacial area 

was adjusted to 0.51, while the other models were 

adjusted with factors between 0.72 and 0.86. 

 

 

4.7  General discussion  
 

Only the results using the Electrolyte-NRTL model in 

Aspen Plus were shown in the figures in this work.  

Earlier work has shown that different equilibrium 

models give similar results (Sætre, 2016; Øi et al., 

2018), and this has also been confirmed in simulations 

in Fagerheim (2019).  

Some references (Zhang et al., 2009; Larsen, 2014; 

Desvignes, 2015) have compared also the concentration 

profiles when comparing performance data and 

simulation tools.  This may give additional information 

for analysis. 

 Only performance data with 24 meter of packing was 

used in this and earlier work.  The low Murphree 

efficiency on the lowest stages indicate that the number 

of stages in the column is too high.  Equilibrium based 

and rate-based models could also be fitted to 

performance data for lower packing heights which are 

available for e.g. 18 meter packing height (Gjernes, 
2017). 
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This work indicates that equilibrium based models 

give better predictions at other conditions.  This is 

probably not a general conclusion.  Equilibrium based 

models are very empirical and are probably only useful 

when the conditions do not change much.  Some have 

claimed (Zhang et al., 2009) that rate-based models are 

superior to equilibrium based models.  There are several 

factors and parameters in the rate-based models which 

are not well known, typically specifications for fluid 

flow, heat transfer and mass transfer mechanisms in 

structured packings.  When the knowledge of these 

factors becomes better known, the rate-based models 

can probably be made more predictive. 

 

5 Conclusions 

Five different scenarios from the CO2 capture process at 

TCM have been simulated in a rate-based model in 

Aspen Plus and in an equilibrium-based model in Aspen 

HYSYS and Aspen Plus.  In the rate-based model, the 

performance data was fitted by changing only the 

interfacial area factor to obtain the experimental CO2 

removal efficiency.  The simulated temperature profile 

from top to bottom of the absorption column was then 

only qualitatively correct compared to the measured 

temperature profile.  In the equilibrium based model, a 

Murphree efficiency (EM) was specified for each of 24 

stages (meter of packing) to fit both the CO2 removal 

efficiency and the temperature profile for one scenario.  

In this work different EM-profiles (different EM values 

on each stage) were examined to fit the temperature 

profile for a given scenario.  The EM-profiles were then 

used to fit performance data for other scenarios by 

adjusting only an EM-factor which multiplies all the EM 

values in an EM-profile. 

It was evaluated whether a fitted interfacial area (for 

the rate-based model) or a fitted EM-profile (for the 

equilibrium based model) for one scenario gave a good 

prediction for other scenarios.  The rate-based model 

fitted for a certain scenario was not able to predict 

performance well for all other scenarios.  An indication 

of this was that the interfacial area in the different 

scenarios had to be varied between 0.29 and 1.0 to 

obtain the measured CO2 removal efficiency. Using a  

EM-profile fitted for a specific scenario was able to 

predict performance better for all the scenarios.  By 

multiplying the specified EM-profile with an EM-factor 

(only one parameter), the fit at a new scenario was 

reasonably accurate.  The fitted EM-factor for each 

scenario had to be varied between 0.60 and 1.02 to 

obtain the measured CO2 removal for all the scenarios. 

The performance (CO2 removal efficiency and 

temperature profile) was reasonably fitted and simulated 

for each scenario by all the models.  None of the models 

are however expected to predict accurate performance 

for conditions far from the fitted scenario without any 

additional adjustment. 
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