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Abstract 
This study focuses on exctracting ethylene and 

propylene from other componenents in the pyrolysis gas 

mixture of plastic waste. Selective absorption of 

ethylene and propylene from the gas mixture by using a 

silver nitrate solution, was selected as a promising 

technology. A lab scale set-up was built and 

experimental tests were performed using a model gas 

mixture. Aspen HYSYSV10 was used to model and 

simulate the absorption process. The model was 

validated against experimental data. The validated 

model was further used to identify improvements for the 

separation process and increase the recovery of ethylene 

and propylene. The results from the simulated improved 

process show that the amount of ethylene and propylene 

in the product gas could be significantly increased. In 

the experimental study, only 25% of ethylene and 

propylene in the feed was captured, whereas the 

simulation of the improved process indicates that the 

recovery of the monomers could be almost quantitative 

(99%).  However, the product gas from the separation 

system contained an undesirable high amount of CO and 

CO2. These gases act as pollutants of the polyolefin 

reaction  and further studies are needed to obtain pure 

olefin gases. 
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1 Introduction 

Global production of plastics has since 1940 become 

one of the fastest growing industries in the world. 

PlasticsEurope (PlasticsEurope, 2019) and the European 

Association of Plastics Recycling and Recovery 

Organizations (EPRO, 2018) reported that the global 

plastic production in 2017 was 348 million tons, out of 

which 64.4 million tons were produced in Europe. The 

largest plastic producers were China and Europe by 

producing 29.4% and 18.5% of the total respectively. 

(G. Gourmelon, 2015; A. Demirbas, 2004) The 

European commission has presented a plan to 

implement a circular economy with a key focus on 

plastics. The plan is set to ensure that all plastic 

packaging is reused or recycled by the year 2030. 

(Plastics Europe, 2019). According to EUs circular

Economy Package and directive (EU) 2018/850 adopted

by the European parliament and by the EU council in

2018,  Member States will be required to ensure that, as

of 2030, waste suitable for recycling or other recovery,

in particular contained in municipal waste, will not be

permitted to be disposed of to landfill. The re-processing

operation in mechanical recycling is not cost effective

since this process has high energy demand for sorting,

cleaning, transportation and processing (Panda et al.,
2010). Chemical recycling is the state of the art

feedstock recycling, also known as tertiary recycling.

The aim is to convert waste polymers into valuable

chemicals or original monomers. Cracking is one of the

main approaches to this method (Panda et al., 2010).

     The aim of this study is a) to carry out experimental

separation tests to obtain pure ethylene and propylene,

and b) to develop a process simulation model that can

be used to optimize the purification process. In order to

obtain the requested purity grade for polymerization of

ethylene and propylene, there are two options. The first

option is to focus on ethylene and propylene and try to

extract them from the other components in the pyrolysis

gas. The second option is to remove all impurities in the

pyrolysis gas one by one. The first option was chosen in

this study, and absorption is used to extract ethylene and

propylene from a gas mixture.

2 Purification process

Figure 1 illustrates the general steps of sustainable

polymer production from biomass or plastic waste.

Plastic waste or biomass is fed to the pyrolysis reactor.

The composition of the outlet gas from the reactor is

highly dependent on the composition of the plastic

waste. In the pyrolysis process, the components of the

plastics can be converted into solid (char), liquid

(pyrolysis oil) and gas (Dermibas, 2004). The product

gas is collected from the top of the pyrolysis reactor, and

in order to use the gas in the plastic production process,

a purification process is needed. The polymerization

reaction is sensitive to impurities, and all impurities

should be removed from the gas. Therefore, the

purification process has an essential role in the whole

process. The products from the polymerization process

are polyethylene (PE) and polypropylene (PP).
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Figure 1. Simplified overview of the plastic recycling

process.

Thermal pyrolysis is a well-known method for

managing and recycling plastic waste. The composition

of the product gases from the pyrolysis reactor can vary

due to differences in the composition of the plastic

wastes used as feed to the pyrolysis reactor. Hydrogen,

oxygen, light olefins (ethylene, propylene, butene),

aromatics (benzene, toluene, xylene), polycyclic

aromatic hydrocarbons (PAHs), carbon monoxide (CO),

carbon dioxide (CO2) are the main gaseous component

(Donaj et al., 2012; Xue et al., 2016).

     Several methods and technologies to be used for

purification of the pyrolysis gases are found in literature.

An absorption process based on the silver-olefin

complexation mechanism was chosen to extract

ethylene and propylene from the other gas components

(Ananthapadmanabhan and Goddard, 1988; Safarik and

Eldridge, 1998; Li, 2013). The advantages of the process

is that it can selectively extract the ethylene and

propylene from the pyrolysis gas as the silver ions bind

ethylene and propylene while they do not interact with

CO and CO2. CO and CO2 are considered as poisons for

the polymerization process, and it is crucial to minimize

the content of those components in the purified gas. A

disadvantage with the process is that the silver nitrate is

expensive, and it is very important that it can be

regenerated without significant degradation.

    Mortaheb et al developed a mathematical model and

studied the absorption of ethylene from an ethylene-

ethane gas mixture by using a silver nitrate solution in a

semi-continuous process. The model includes that

absorption is a function of temperature and

concentration of the absorbing solution. According to

the experimental results, an increase in temperature

decreases the amount of absorbed ethylene.

Furthermore, the amount of absorbed ethylene is

increased in solutions with higher concentrations of

silver nitrate. Figure 2 compares the total absorption

values from the model with experimental data for two

different silver nitrate molarities (Mortaheb et al., 2009).

 
Figure 2. Comparison of total absorption with estimated 

values by the model (Mortaheb et al, 2009).  

A mathematical model proposed by Ghasem et al 

presents the solubility of ethylene as a function of silver 

nitrate concentration, feed gas pressure and temperature. 

Ghasem et al studied the separation of ethylene from an 

ethylene/ethane gas mixture using a hollow fiber 

membrane. The model is valid at pressure up to 0.64 

MPa, silver nitrate concentrations from 1 to 6 M and 

temperatures from 278 to 308 K. Figure 3 shows the 

ethylene solubility in silver nitrate solution as a function 

of the feed gas pressure and the silver nitrate 

concentration. The solubility of ethylene increases with 

increasing pressure and with increasing concentration of 

the silver nitrate solution (Ghasem et al, 2017). 

 

Figure 3. Ethylene solubility in silver nitrate solution as a 

function of gas pressure and silver nitrate concentration 

(Ghasem et al, 2017).  

3 Material and methods  

3.1 Experimental set-up 

The experimental set-up is shown in Figure 4. The test 

rig consists of a reactor where the aqueous silver nitrate 

solution is filled. The reactor is connected to a high-

pressure vessel which is again connected to the main gas 

mixture capsule. The piping from the top of the reactor 

is connected to vent, to an aluminum gas collection bag 
and to a vacuum bomb. Each line has valves to control 

the flow. A digital temperature indicator and a pressure 
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indicator are connected to the reactor to monitor the 

temperature and pressure inside the reactor. Nitrogen is 

connected to the feeding line, and is used to purge the 

system. A gas chromatograph (GC), with helium as the 

carrier gas, was used for the analysis of the gas samples. 

 

Figure 4. Experimental set-up for extraction of ethylene 

and propylene.  

3.2 Simulation model 

The process simulation software Aspen HYSYSV10 is 

used to model and simulate the purification process. 

There are several thermodynamic models available in 

the Aspen HYSYSV10 library. In order to obtain 

accurate simulation results, it is crucial to choose the 

appropriate thermodynamic model. The three main 

thermodynamic groups of models are the equation of 

state (EOS), the activity coefficient models and some 

special models which are related to specific 

components. In this study an activity coefficient model 

was used. Activity coefficient models are applied for 

highly non-ideal polar systems, and are empirical 

models.  In these models, an equation of state is used for 

predicting the vapor fugacity coefficients and an activity 

coefficient model is used for the liquid phase (Aspen 

HYSYS Software, 2014). Different models were tested, 

and the Electrolyte Non‐Random Two‐Liquid (eNRTL) 

model was chosen for the simulations. The reason for 

choosing the eNRTL model, is that silver nitrate is a 

strong electrolyte (Keller et al, 1992). The eNRTL 

model covers a wide variety of aqueous and mixed‐

solvent electrolyte systems covering the whole 

concentration range from fused salts or pure solvents to 

saturated solutions (Chen and Song, 2004).   

     Figure 5 shows a set-up for the absorption process 

developed in Aspen HYSYS. The absorbent silver 

nitrate (Lean Solution) and the gas mixture (Feed Gas) 

are fed to the absorption tower (Absorber Tower-100) to 

extract ethylene and propylene from the gas mixture. 

The pressure in the absorber is the same as in the feed 

gas and the absorbent. The absorption is the first step in 

the ethylene and propylene separation.   

     The rich silver nitrate solution from the absorber 

contains the absorbed ethylene and propylene together 

with some impurities. The solution is fed to a distillation 

tower (Distillation Tower-102), where most of the 

impurities goes to the top of the tower and to vent. The 

absorbent including ethylene and propylene is taken out 

in the bottom, and fed to the next distillation tower 

(Distillation Tower-103), which operates at a lower 

pressure. In this tower ethylene and propylene are 

separated from the silver nitrate solution. The 

distillation tower (Distillation Tower-103) is operated 

under vacuum to capture as much as possible of the 

ethylene and propylene gases from the solution. The 

regenerated lean absorbent is taken out in the bottom of 

the distillation tower, and is recycled to the absorption 

tower.  In order to ensure that the temperature and 

pressure of the recycled absorbent is the same as in the 

absorption tower, the Set-functions are defined to adjust 

the pressure after the pump (Pump-100) and the 

temperature after the heat exchanger (Heat-Exchanger-

100). The recycle function (RCY-1) in the regeneration 

loop, is defined to update the estimated values in the 

lean absorbent stream. 

     Since the extraction of ethylene and propylene with 

silver nitrate follows the π-complexation mechanism 

and does not include chemical reactions, distillation 

columns are used for the separation of the components 

from the absorber. In order to develop a robust model to 

simulate the ethylene and propylene absorption, the 

model has to be validated against the experimental data.  

A one-stage absorber, as used in the experimental study, 

is therefore chosen for the development of the model.  

The validated model can further be improved by 

including multiple stages, in order to obtain the desired 

separation. A packed absorber is used in the simulations. 

The reason for choosing a packed absorber instead of the 

tray type, is to minimize the inventory of silver nitrate 

in the absorber (Keller et al, 1992). The pressure in the 

absorber is 1700 kPa. The diameter of the absorber is 

1.5 m and the packing height is 0.61 m.

Nitrogen 

Aluminum bag 

Vacuum bomb 

Gas capsule 

Reactor 

To vent 

High 

Pressure 

vessel 
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Figure 5. Simulation model for ethylene and propylene separation

4 Results 

4.1 Experimental results 

The solubility of ethylene and propylene in a silver 

nitrate solution is a function of gas pressure and silver 

nitrate concentration. Experiments were carried out 

using a 3M silver nitrate solution at ambient temperature 

and at initial pressure of 41 bar. The composition of the 

feed gas to the absorber is presented in Table 1.  

Table 1. Feed gas composition.  

Component name Mass fraction Mole fraction 

C2H4 0.2 0.2185 

C3H6 0.2 0.1456 

CO 0.05 0.0546 

CO2 0.05 0.0349 

N2 0.5 0.5463 

 

A series of experiments were carried out to study the 

absorption of ethylene and propylene in silver nitrate. 

Two of the experiments are presented in this paper. The 

pressures in the different tanks are presented in Table 2. 

The same pressures were used as input to the simulation 

model. One of the big challenges during the 

experiments, was to obtain exactly the same pressure in 

all the tests. In theory, the absorption of olefins increases 

with increasing pressure (Keller et al, 1992). In the  

 

 

experimental setup, it was very difficult to maintain a 

stable pressure during the absorption at pressures higher 

than 17 bar (final pressure R1). The pressure was 

therefore kept at 17 bar, but still some pressure 

variations between the  experiments were observed. 

Therefore, only two experiments (one with new silver 

nitrate solution and one with reused solution) are 

presented here. The results from these two experiments 

will further be used for validation of the process 

simulation model. The pressure in the vacuum bomb and 

the aluminum bag are critical for the results of the tests. 

Table 2. Operating pressures for the absorption process  

Pressure [bara] Exp. 1 

(New 

solution) 

Exp. 2 

(Reused 

solution) 

Initial pressure (R-01) 41.03  41.01 

Final pressure (R-01) 17.01 17.01 

Vacuum bomb  5.51 5.51 

Initial alum. bag  17.01 17.01 

Final alum. bag  1.05 1.05 

 

Table 3 presents the results of the experiments (Kannan, 

2019), and shows the recovery of the different gas 

components in the captured gas. Due to the limitations 

in the analysis set-up, nitrogen was injected into the 

vacuum bomb to enable feeding of the sample to the gas 

chromatograph.  
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Table 3. Mole % recovery of each component in the 

captured gas.  

 CO2 CO N2 C2H4 C3H6 

Ex. 1 8.4 1.82 0.01 25.5 25.5 

Ex. 2 7.5 1.26 0.01 25.6 24.7 

 

Based on the results and the mass balance over the 

different units in the set-up, the mass flow rate for each 

stream was calculated (Kannan, 2019). The results from 

the experiments were used to design a cleaning process 

for an inlet gas flow rate of 10 kg/h. Table 4 presents the 

calculated mass flow rates for the different streams 

based on the two experiments.   

Table 4. Mass flow rates for the process streams.  

 Exp. 1 

[kg/h] 

Exp. 2 

[kg/h] 

Inlet silver nitrate 

solution [kg/h] 

189 203 

Inlet gas flow [kg/h] 10.0 10.0 

Escaped gas [kg/h] 7.70 7.70 

Vent gas [kg/h] 0.85 0.91 

Captured gas [kg/h] 1.40 1.40 

 

As can be seen from Table 4, a large part of the feed gas 

leaves the absorber as escaped gas, which suggests need 

for improvement of the experimental set-up.  

4.2 Simulation results 

The process simulation is validated against the 

experimental results, and the validated model is further 

improved to get a higher recovery of ethylene and 

propylene in the captured gas. 

4.2.1 Validation of model 

Table 5 shows the simulated and the experimental flow 

rates of the captured and escaped gas. The simulated 

flow rates of the captured gas are higher than the 

experimental results, whereas the escaped gas flow rates 

are higher in the experiments than in the simulations. 

This can be due to more ideal and stable operation 

conditions in the simulations.  

     Figure 6 shows a comparison of the simulated and 

experimental composition of the captured gas. Some 

deviations between the computational and experimental 

results are observed. The experimental mole fraction of 

ethyelene are significantly higher than the simulated 

mole fraction, whereas the experimental mole fractions 

for propylene, CO2 and CO are slightly lower than in the 

simulations. The reason may be variations in the feed of 

silver nitrate to the absorber. The deviations can also be 

explained by the tray efficiency, which had to be 

adjusted in the software in order to the obtain 

convergence. 

     In Table 6, the recovery of the different components 
in the captured gas is presented. The recovery of 

ethylene and propylene is significantly higher than in the 

experiments, which is beneficial for the extraction 

process. However, the process simulation also gives a 

significantly higher absorption of the unwanted 

components CO and CO2. 

     Table 5. Mass flow rates for the process streams.  

 Flow rate capured 

gas [kg/h] 

Flow rate escaped 

gas [kg/h] 

Exp. 1 1.4 7.7 

Exp. 2 1.4 7.7 

Sim. 1 1.8 5.8 

Sim. 2 1.7 5.8 

 

 

Figure 6. Comparison of simulated and experimental 

composition of captured gas. 

Table 6. Simulated mole % recovery of each component 

in the captured gas. 

 CO2 CO N2 C2H4 C3H6 

Sim. 1 19.9 3.32 0.01 33.9 42.0 

Sim. 2 22.0 3.92 0.01 34.2 41.2 

 

Figure 7 shows the comparison of the composition of 

the escaped gas. There are only small deviations 

between the experiments and the simulations. The 

escaped gas contains about 60 mole% nitrogen, but it 

also contains about 20% ethylene and 12% propylene in 

addition to the CO and CO2. This means that there is a 

large potential to recover more of the ethylene and 

propylene.  

 

 

Figure 7. Comparison of simulated and experimental 

composition of escaped gas. 

The simulated loss of each component through the 

escaped gas are presented in Table 7. The loss is defined 
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as the mole % of the components in the feed leaving the 

absorber in the outlet gas. As can be seen from the table, 

more than half of the ethylene and propylene are lost in 

the outlet gas stream from the absorber. 

Table 7. Simulated loss (in mole % of the feed) of the 

components through the escaped gas. 

 CO2 CO N2 C2H4 C3H6 

Sim. 1 50.7 60.8 63.4 52.8 52.2 

Sim. 2 50.6 60.7 63.2 52.9 52.3 

4.2.2 Improvement of the simulation model 

In order to absorb all the ethyelene and propylene using 

the silver nitrate solution in the absorber, it is necessary 

to change parameters that affect the escaped gas quantity 

and quality. It is important here to look at the number of 

trays and the tray efficiency in the absorber. The number 

of trays are therefore increased from 1 to 5, and the tray 

efficiency are increased from 0.5 to 0.7. The actual tray 

efficiency depends on the flow rate of the feed gas and 

the absorbent. By increasing both these parameters in 

the absorber, almost all ethylene and propylene are 

solved in the silver nitrate solution. Packed absorbers are 

most efficient and have been used both for the validation 

and the improvement of the model.  

     The separation in the first distillation tower (Tower-

102), depends very much on the pressure. By specifying 

the pressure in the first distillation tower to 750 kPa, a 

significant amount of N2 and a small amount of CO is 

leaving in the vent gas, and the bottom product of the 

tower consists mainly of the silver nitrate solution, 

ethyelene and propylene in addition to some CO and 

CO2. The second distillation tower (Tower-103) can be 

operated at the same pressure (61.3 kPa) as in the base 

case. The number of trays is kept at 3 in the first 

distillation tower and are increased from 1 to 2 in the 

second tower. The tray efficiency in both the distillation 

towers is 0.6, and the reflux ratio is set to 0.3. The 

simulation of the improved model was run with a mass 

flow rate of 234 kg/h for the lean silver nitrate solution. 

The improved model gave a mass flow rate of 2.54 kg/h 

for the outlet gas from the absorber, 2.2 kg/h for the vent 

gas from the second distillation tower and 5.27 kg/h for 

the captured gas. This is a significant improvement 

compared to the experimental results and the results 

from the base case simulations.  

     Figure 8 shows the gas composition in the captured 

gas. About 2 kg of ethylene and 2 kg/h of propylene are 

recovered, which means a recovery of nearly 100%.  

However, at the same time, the recovery of CO, CO2 and 

nitrogen has also increased, which is not beneficial. A 

further improvement of the process is therefore needed 

as CO and CO2 are considered as poisons for the 

polymerization process, and it is crucial to minimize the 

content of those components in the purified gas. One 

solution is to change the temperature and pressure both 

in the absorber and the distillation towers. Increasing the 

temperature in the absorber, may reduce the absorption 

of CO and CO2, but it will also reduce the recovery of 

ethylene and propylene. Reducing the pressure in the 

distillation towers will release more of captured CO, 

CO2 and N2 to the vent gas. The content of CO and CO2 

has to be reduced to very low values, and a recovery of 

ethyelene and propylene in the range of 50-70% may 

therefore be acceptable.  

 

 

Figure 8. Comparison of the composition in the captured 

gas.  

5 Conclusion 

In order to extract ethylene and propylene from the 

plastic waste pyrolysis process, absorption process 

using silver nitrate solution as absorbent was selected as 

a promising technic. A lab scale set-up was built and 

experimental tests were performed to study the 

suitability of silver nitrate solution for extracting the 

hydrocarbons from the pollutants.  

     Aspen HYSYSV10 with the property package 

Electrolyte NRTL was used to model and simulate the 

absorption process. The model was validated against 

experimental data. The results from the simulations 

agreed well with the experimental data in terms of the 

mole fractions and the flow rates of captured gas. The 

validated model was further used to improve the 

separation process and increase the recovery of ethylene 

and propylene. The results from the improved process 

show that the amount of ethylene and propylene in the 

product gas increased significantly. In the experimental 

study, only 25% of ethylene and propylene in the feed 

was captured, whereas the simulation of the improved 

process increased the recovery of the monomers to 99%. 

The product gas contains a relatively high amount of CO 

and CO2. The catalytic polymerization process will be 

poisoned or deactivated if CO and CO2 are present in the 

monomer feed gas, and it is crucial to reduce the 

concentration of these components below acceptable 

levels. The process simulation model has to be improved 

to obtain the low limits for CO2 and CO.  
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