
Model Based Early Kick/Loss Detection and Attenuation with
Topside Sensing in Managed Pressure Drilling

Asanthi Jinasena1 Haavard Holta2 Morten Hansen Jondahl3 Prasanna Welahettige4 Ole Morten
Aamo2 Roshan Sharma3 Håkon Viumdal3 Bernt Lie3

1Department of Energy and Process Engineering, Norwegian University of Science and Technology, Norway,
asanthi.jinasena@ntnu.no

2Department of Engineering Cybernetics, Norwegian University of Science and Technology, Norway,
{haavard.holta,aamo}@ntnu.no

3Department of Electrical Engineering, Information Technology and Cybernetics, University of South-Eastern
Norway, Norway, morthans1@gmail.com, {roshan.sharma,Hakon.Viumdal,Bernt.Lie}@usn.no

4Department of Process, Energy and Environmental Technology, University of South-Eastern Norway, Norway,
prasanna.welahetti@gmail.com

Abstract
Early kick/loss detection is a crucial part of safe well con-
trol, and it plays a major role in the reduction of risk and
non-productive time in drilling. In conventional drilling,
topside sensing is used for early kick/loss detection. Re-
cently, Venturi flowmeter based online return flow esti-
mation has been introduced for this purpose by the au-
thors. In managed pressure drilling, both topside sensing
and bottomside sensing can be used for kick/loss detec-
tion. Therefore, a topside return flow estimator with a
bottomside well pressure and flow estimator is combined
to provide a complete kick/loss detection and estimation
scheme for managed pressure drilling systems. This al-
lows improved kick/loss detection. In addition, a closed-
loop kick/loss attenuation controller is used to illustrate
the estimation scheme.
Keywords: kick loss detection, managed pressure drilling
(MPD), return flow, adaptive control, UKF

1 Introduction
1.1 Background
Oil and gas drilling is done by penetrating a rotating drill
bit into the rock formation, creating a wellbore. The for-
mation is a high pressure and temperature environment.
Therefore, a drilling fluid known as mud is continuously
circulated through the wellbore. This circulation process
is usually divided into two parts: bottomside (wellbore)
and topside (section on the surface).

The bottomhole pressure (BHP) is maintained within
a window for safe operation. If BHP is lower than the
formation fluid pressure, formation fluid may enter the
wellbore. This phenomenon is commonly referred to as
a ‘kick’ which could result in a catastrophic blowout if
not controlled properly. If BHP is higher than the fracture
pressure of the formation, the drilling mud may seep into
the formation, which is known as a ‘loss’.

Early kick/loss detection is a crucial part of safe well
control, and it plays a major role in the reduction of
risk and non-productive time in drilling. In conventional
drilling, this is primarily achieved by using the topside
data, mainly the return mud flow measurement, and the
volume gain in the mud pit. For the return flow, cost-
effective, accurate and online sensors are needed in this
regard. For applications with narrow pressure margins, a
control choke and a back-pressure pump are used to con-
trol the BHP fast and accurately. This is known as man-
aged pressure drilling (MPD).

The topside sensing includes among other measure-
ments: return flow measurements, mud pit gains, and
other respective rheological properties of the drilling mud
that is essential for normal drilling operations. However,
the rheological measurements are often offline, manual
measurements with low frequencies and not eligible for
automation purposes.

1.2 Previous Work on Topside Sensing
A Venturi flowmeter based online return flow estimation
has been studied recently. The fluid level changes in
the open channel is measured non–intrusively and used
to model the fluid flow rate. Both mechanistic and data-
driven models are used for this purpose (Berg et al., 2015;
Chhantyal et al., 2018; Jinasena et al., 2018; Welahet-
tige, 2019; Jinasena, 2019; Jondahl, 2020; Berg, 2020).
Further, these fluid level characterizations are used as in-
puts to different data-driven models for the estimation of
the drilling fluid rheological properties (Chhantyal et al.,
2016). Moreover, some of the fluid rheological properties
which are essential for the drilling operation (mainly vis-
cosity and density) are estimated using ultrasonic waves in
a stationary medium (Jondahl and Viumdal, 2018, 2019;
Jondahl, 2020). The estimations were done by using dif-
ferent data-driven models, and the estimation errors were
within the NORSOK standards accuracy of 2% (Jondahl,
2020).
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Further, the viscosity and the flow behaviour of the
drilling mud has been studied extensively using 3D com-
putational fluid dynamics (CFD) simulations (Welahet-
tige, 2019). This has been beneficial to the different
models that can be used for return flow rate estima-
tion. High-resolution numerical schemes such as the flux-
limited-centered scheme has been applied to solve a non-
Newtonian model for open channel. This scheme is well-
balanced, positivity-preserving and has a high accuracy,
and a good resolution for discontinuities. The developed
model was tested with hydraulic jumps propagation in
open Venturi channels. Moreover, the effect of drill cut-
tings on the return flow measurements have also been stud-
ied (Welahettige et al., 2019) and a multi-fluid volume of
fluid model has been used for the CFD analyses.

These studies as a whole, improve the topside models
and the estimations. Further, these studies complement the
topside sensing and the early kick detection in general.

In this paper, we combine a topside return flow esti-
mator with a bottomside well pressure and flow estimator
to provide a complete kick/loss detection and estimation
scheme for MPD systems. In addition, to illustrate the es-
timation scheme, a closed loop kick/loss attenuation con-
troller is used.

The paper is organized as follows. The complete sys-
tem, including the mathematical models, estimation and
control methods, are presented in Section 2. This is fol-
lowed by the simulation set-up, detailed results and dis-
cussion in Section 3. Finally, the conclusions drawn from
the results and discussion are summarized in Section 4.
Further, a more detailed mathematical overview of the es-
timator schemes can be found in the Appendix A.

2 System Description
The block diagram of the considered complete flow loop
of the MPD system is shown in Figure 1. The main pro-
cess steps of the entire flow loop which are modeled are
shown here with the notations.

2.1 Mathematical Models
Both the flow dynamics in the annulus and the top-side
Venturi channel are modelled as distributed systems of hy-
perbolic PDEs, while the drill string is considered as a
known input-output system. In the annulus, the pressure
p(z, t) and flow rate q(z, t) are modelled by the well known
water hammer equations for compressible, single-phase
flows with low Mach numbers (Ghidaoui et al., 2005),
while the wetted cross-sectional area Ac(x, t) and flow rate
ql(x, t) in the Venturi channel are modelled by the Saint-
Venant, shallow water equations (Chow, 1959; Chaudhry,
2008).

The water hammer equations modelling the well flow
have the form,

∂ p(z, t)
∂ t

=
β

Aa

∂ q(z, t)
∂ z

, (1)
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Figure 1. The block diagram of the flow loop of a MPD system.

∂ q(z, t)
∂ t

=−Aa

ρ

∂ p(z, t)
∂ z

− Fa

ρ
q(z, t)−Aag. (2)

Here, z ∈ [0, lw] and t ≥ 0 are the independent variables
of space and time respectively, where z = lw is at the top
of the well and lw is the well depth. ρ is the density of the
drilling mud, β is the bulk modulus of the mud, Fa is the
friction factor in the annulus, Aa is the cross sectional area
of the annulus and g is the acceleration of gravity.

The two boundary conditions are the topside pressure
p(lw, t), and the net inflow q(0, t) at the bottom of the well.
The topside pressure pl(t) is related to the topside flow
rate q(lw, t) through the choke equation,

q(lw, t) = kchoke(t)sign(pl(t)− p0)
√
|pl(t)− p0|, (3)

where p0 is the atmospheric pressure and kchoke is the
choke coefficient which can be used as an actuation. The
net inflow is modelled as a simple linear flow-pressure re-
lationship as follows (Dake, 1998),

q(0, t) =J
(

pr− p(0, t)
)
+qbit, (4)

p(lw, t) =pl(t), (5)

where pr is the pressure in the surrounding formation, qbit
is a known volumetric flow through the drill bit, J is the
so-called productivity-index. Both the productivity index
J > 0, and the formation pressure pr > 0 are assumed un-
known and must be estimated. The topside flow rate ql(t)
is modeled using the topside model which is described
next.

The topside flow rate ql(x, t) is measured by a Venturi
channel flowmeter, which uses the fluid levels h(x, t) to
calculate the flow rate based on the 1–D shallow water
equations (Chow, 1959; Chaudhry, 2008).

∂ Ac(x,h, t)
∂ t

=−∂ ql(x, t)
∂x

(6)

SIMS 61

DOI: 10.3384/ecp20176236 Proceedings of SIMS 2020
Virtual, Finland, 22-24 September 2020

237



∂ ql(x,t)
∂ t =− ∂

∂x

(
α

q2
l (x, t)

Ac(x,h, t)
+gI1 cosφ

)
+gI2

+gAc(x,h, t)sinφ −Tf (7)

Here, Ac(x,h, t) is the wetted cross sectional area in the
channel normal to the flow, h(x, t) is the depth of flow, and
ql(x, t) is the volumetric flow rate in the channel. x∈ [0, lc]
is the position along the channel, and lc is the length of the
channel. I1, the first moment of area represents the hydro-
static pressure term and I2 represents the pressure forces in
the fluid volume, which occur from the longitudinal width
and slope variations in the channel. φ is the channel bot-
tom slope angle, α is known as the momentum correction
coefficient or the Boussinesq coefficient and corresponds
to the deviations of the local velocity over the mean ve-
locity of the flow, and Tf is the non-Newtonian friction
term.

Equations 6 and 7 are used for the Venturi channel with
a trapezoidal cross section and a zero bottom slope angle.
The boundary condition for the Venturi channel is the top-
side flow rate q(lw, t) of the choke equation (equation 3).
The fluid levels produced by the model will be then taken
as measurements for the estimation.

The same set of equations (6 and 7) is used to model the
return flowline with a circular cross section and a 7◦ bot-
tom slope angle. The flowline is connected to the Venturi
by taking the Venturi outlet flow rate ql3(t) as the bound-
ary condition to the flowline model. More details on the
Venturi channel model and the return flowline model can
be found at (Jinasena et al., 2019; Pirir et al., 2018),
respectively.

The active mud pit level hm is modeled by the simplified
mass balance equation as follows (Pirir et al., 2018),

dhm

dt
=

1
Am

(ql−qloss−qpump), (8)

where Am is the cross sectional area of the active mud pit,
qloss is the fluid losses at solid removal equipment and
qpump is the mud flow in to the well which is measured
by the mud pump. Here ql is the outlet flow rate of the
flowline.

The density of the drilling mud is assumed to be con-
stant throughout the flow loop, and only a single phase
(liquid) flow is considered with no gas or cuttings flow.

The return flow rate from the Venturi channel, and the
mud pit level are estimated. Further, the topside model al-
lows to estimate the non-Newtonian friction coefficient of
the mud and the fluid losses from the solid removal equip-
ment as well (Jinasena et al., 2019; Jinasena and Sharma,
2020). However, the friction coefficient and fluid losses
are not estimated in this study as the focus is on the well
dynamics.

௟

௥
௟Topside 

return 
flow 
estimator

Bottomside 
well flow 
estimator

Pressure 
controller

௠ ௟

௟

Figure 2. Estimators and controller configuration.

2.2 Estimation and Control Methods
The main objective of this study is to use this combined
model to estimate the reservoir pressure and the BHP,
which can be an input to the kick/loss attenuation system.

The system configuration is shown in Figure 2. The
available measurements for the system are the fluid levels
of the Venturi channel and the mud pit level. The topside
estimator uses both of these measurements to estimate the
return flow rate. The return flow estimates are used as an
input to the bottomside estimator, where the annulus pres-
sure and flow, and the reservoir pressure and productivity-
index are estimated. All estimated states and parameters
are then used to guide a closed-loop kick/loss attenuation
system by adjusting the top-side MPD choke opening.

In this study, for the topside estimator, we use the esti-
mator presented in (Jinasena et al., 2019) which is based
on an unscented Kalman filter (UKF). For the bottomside
estimator we use the adaptive observer design presented
in (Holta et al., 2017).

2.2.1 UKF

The return flow rate, the non-Newtonian friction coeffi-
cient and the rate of fluid loss at the solids removal sys-
tem can be estimated by the UKF (Jinasena and Sharma,
2020). One of the fluid levels of the Venturi channel can
be used as an input, if preferred. However, in this study,
two fluid levels are used as measurements and no input is
used for the estimator. Further, only the return flow rate
is estimated for simplicity. More details on the UKF can
be found in (Jinasena et al., 2019; Jinasena and
Sharma, 2020) and a brief explanation is given in
Appendix A.2.

2.2.2 Adaptive Observer

The distributed pressure p(z, t) and flow q(z, t) in the
annulus, are estimated using a distributed-state observer
which is derived using the so-called infinite-dimensional
backstepping design. The unknown reservoir pressure pr
and the productivity index J are estimated by an adaptive
law based on a linear parametric model. Both the topside
choke pressure and the estimated return flow are consid-
ered as external inputs to the observer. All necessary de-
sign elements needed to implement the adaptive observer
are provided in Appendix A.1. More details on the ob-
server design, including stability proofs can be found in
(Holta et al., 2017).
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Figure 3. The pressure pz and flow rate qz along the well depth.

Figure 4. The model results, (a) reservoir pressure pr and well
pressure p0, (b) flow through bit qbit, bottom hole flow rate q0
and return flow rate ql , (c) control signal pl , and (d) mud pit
level hm.

2.2.3 The Choke Controller

Based on the return flow estimates, the well flow and pres-
sure estimates, and the estimated reservoir properties, a
desired topside choke pressure is computed by the kick-
/loss attenuation system. The kick/loss attenuation system
is derived using the infinite-dimensional backstepping ap-
proach. In (Holta et al., 2017), stability is proved for
the closed loop system consisting of the bottomside
estima-tor and the pressure controller. From the choke
equation (Equation 3), the variable choke opening
kchoke(t) can be adjusted to match a given return flow
estimate and desired topside pressure.

3 Results and Discussion
The bottomside model and estimator are implemented in
MATLAB using a 1st order upwind scheme for the spa-
tial discretization and Euler scheme for the temporal dis-
cretization. The topside model and estimators are imple-
mented in MATLAB using orthogonal collocation for the
spatial discretization and Runge-Kutta 4th order scheme
for the temporal discretization.

The simulation results of the well model, mainly the
pressure pz and flow rate qz for constant input values can
be seen from Figure 3. The linear relationship of pressure
with the well depth can be clearly seen.

The simulation results of the combined model with a
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Figure 5. The estimated reservoir pressure ( p̂r) and BHP (p̂0)
with the actual reservoir pressure (pr).
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Figure 6. The estimation error of BHP (p0− p̂0) and reservoir
pressure (pr− p̂r).
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Figure 7. The estimated volumetric flow rates q̂0 and q̂l against
the flow through drill bit qbit.

known reservoir pressure, and known flow through bit are
shown in Figure 4. The objective of keeping the BHP
close to the reservoir pressure is achieved with a small
time lag of about 40 s as shown in (a) in Figure 4. Fur-
ther, the control signal and the mud pit volume are shown.

The estimated BHP and the reservoir pressure using the
bottomside adaptive observer are shown in Figure 5 to-
gether with the actual reservoir pressure.

The estimation error between the estimated BHP and
the actual BHP is shown in Figure 6 as well as the esti-
mation error between the estimated and actual reservoir
pressure. The estimation error of the reservoir pressure is
quite high due to the time lag. However, the BHP estima-
tion error is comparatively low.
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Figure 8. The estimated productivity index Ĵ and the constant
productivity index J that is used in the model.
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Figure 9. The estimated volumetric flow rates along the Venturi
channel (q̂l1 and q̂l3 ) with the actual flow rate ql .

Similarly, the observer results of the estimated volumet-
ric flow rates at bottom and top of the well are shown in
Figure 7 together with the volumetric flow rate through
the drill bit. The change of the estimated parameter, pro-
ductivity index, with the change of reservoir pressure can
be seen in Figure 8 against the constant value used in the
model.

The topside estimator results of the volumetric flow
rates along the Venturi channel are shown in Figure 9 with
the model result from the bottomside model. The numer-
ical oscillations on the actual flow rate are filtered out by
the UKF along the channel length as seen on the flow rate
estimation of the third position of the channel. This flow
rate is then used in the active mud pit model to estimate
the mud pit level. The estimated mud pit level is shown
in Figure 10 with the actual mud pit level. Since the flow
rate fluctuation during disturbances are quite low, the mud
pit level fluctuation is also comparatively low.

The estimation errors of different flow rate estimates
are shown in Figure 11. The estimation error of the flow
rate at the bottom of the well and the estimation error of
flow rate at the top of the well are quite high similar to the
pressure estimation error of the observer. However, the
estimation error of the Venturi flow rate is comparatively
low. Although the high estimation errors exist when con-
sidered separately, the estimated flow rate at the top of the
well (return flow rate) for the complete system is taken to
be the estimated Venturi channel flow rate.
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Figure 10. The estimated active mud pit level ĥm with the actual
mud pit level hm.
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Figure 11. The estimation error of flow rate at bottom of the
well (q0− q̂0), flow rate at top of the well (ql− q̂l) and flow rate
at the Venturi channel (ql− q̂l3), respectively.

4 Conclusions
The complete flow loop of a managed pressure drilling
system is tested for a novel, mathematical model-based
kick/loss detection scheme. A topside return flow esti-
mator is combined with a bottomside well pressure and
flow estimator to provide this complete kick/loss detec-
tion scheme. The topside flow rate estimator consists of a
Venturi flowmeter, return flowline and the active mud pit.
This return flow estimate is then used as input to the bot-
tomside wellbore estimator. The distributed pressure and
flow rate in the annulus, and the unknown reservoir pres-
sure and the productivity index are estimated by an adap-
tive observer. The topside and bottomside estimators are
then used in closed loop with a topside choke controller.
The bottomhole pressure is controlled to be equal to the
estimated reservoir pressure and the kick/loss is attenu-
ated in a simulation environment. The estimation results
are accurate and show improved kick/loss detection and
attenuation capability.
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A Appendix
The details of the estimators are briefly stated in this sec-
tion.

A.1 Adaptive Observer
The system described in equations 1 - 5 can be written in
an equivalent characteristic form using its Riemann coor-
dinates (u,v), which are obtained through a linear transfor-
mation of variables (p,q) → (u,v) (see for example
(Aamo, 2013)):

∂ u(zn,t)
∂ t +λ

∂ u(zn,t)
∂ zn

=c1(zn)v(zn, t) (9)
∂ v(zn,t)

∂ t −µ
∂ v(zn,t)

∂ zn
=c2(zn)u(zn, t) (10)

u(0, t) =θ1v(0, t)+θ2 (11)
v(1, t) =U(t) (12)

y(t) =u(1, t) (13)

Here, zn ∈ [0,1] and t ≥ 0 are the independent variables,
while u(zn, t) and v(zn, t) are the transformed states of the
system. Further, λ ,µ > 0, and c1(zn),c2(zn) ∈ C([0,1])
are known, while θ1, θ2 are unknown parameters given
uniquely by the unknown reservoir parameters J, pr. U(t)
and y(t) are uniquely given by the topside pressure pl(t)
and topside flow ql(t).

The following observer is designed for the system.

∂ û
∂ t +λ

∂ û
∂ zn

=c1(zn)v̂+P1(zn, t)
[
y(t)− û(1, t)

]
(14)

∂ v̂
∂ t −µ

∂ v̂
∂ zn

=c2(zn)û+P2(zn, t)
[
y(t)− û(1, t)

]
(15)

û(0, t) =θ̂1v̂(0, t)+ θ̂2 (16)
v̂(1, t) =U(t) (17)

Here, û, v̂ are the system state estimates, θ̂1, θ̂2 are the pa-
rameter estimates and P1,P2 are the output injection gains
satisfying

P1(x, t) =λPu(x,1, t) (18)
P2(x, t) =λPv(x,1, t) (19)

where the kernels Pu,Pv are the unique solution to the sys-
tem

Pu
t (x,ξ , t)+λPu

x (x,ξ )+λPu
ξ
(x,ξ ) =c1(x)Pv(x,ξ ) (20)

Pv
t (x,ξ , t)−µPv

x (x,ξ )+λPv
ξ
(x,ξ ) =c2(x)Pu(x,ξ ) (21)

Pv(x,x) =
c2(x)
λ +µ

(22)

Pu(0,ξ ) =θ̂1Pv(0,ξ ). (23)

The equations are solved by a finite-difference method
over a selected triangular discretized mesh of space.

The parameter estimates θ̂1, θ̂2 are generated by the

adaptive laws

˙̂
θ 1(t) =

Γ
ϑ(t)−v̄(t)θ̂1−θ̂2

2+v̄(t) v̄(t) for t > tF
0 otherwise

(24)

˙̂
θ 2(t) =

Γ
ϑ(t)−v̄(t)θ̂1−θ̂2

2+v̄(t) for t > tF
0 otherwise

(25)

where

ϑ(t) =y(t)− û(1, t)+ θ̂1(t−dα)v̄(t)+ θ̂2(t−dα) (26)
v̄(t) =v̂(0, t−dα)

+
∫ 1

0
Pv(0,ξ ,−t−dα)y(t−

ξ

λ
)dξ

−
∫ 1

0
Pv(0,ξ ,−t−dα)û(1, t−

ξ

λ
)dξ (27)

A.2 UKF
The shallow water equations (equations 6 and 7) can be
simplified into ordinary differential equations using the
orthogonal collocation (for example using 3 collocation
points) as follows.

dAci

dt
=−

3

∑
i=1

MT
i jqli (28)

dqli
dt =−

3

∑
i=1

MT
i j

q2
li

Aci

−g
3

∑
i=1

MT
i jI1i cosφ

+gAci sinφ −Tfi (29)

M =
1
lc

−3 4 −1
−1 0 1
1 −4 3

 , (30)

Here i, j ∈ [1,2,3]. The detailed derivation of the equa-
tions can be found in (Jinasena et al., 2017). This
sim-plified non-linear system for the UKF can be
written in discrete time form as follows,

Xk+1 = fn(Xk, tk)+wk(tk), (31)
yk =CXk + vk(tk), (32)

The function fn represents the nonlinear model given
by Equations (28)–(30) and (8) for ḣi, q̇li , and ḣm, respec-
tively. k is the discrete time index. The measurement noise
in the measured output at tk is denoted by vk ∈Rnm , where
vk ∼N (0,R). Similarly, wk ∈ Rns , where wk ∼N (0,Q)
accounts for process noise. Here, nm and ns are the num-
ber of measurements and number of states, while R and
Q are the covariance matrices for measurement noise and
process noise, respectively.

The states and measurements can be chosen from
the available fluid levels as preferred, based on the
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necessity and observability. For example; X =
[h1 h2 h3 ql1 ql2 ql3 hm]

T and y = [h2 h3 hm]
T is chosen

for faster convergence of the observer, thus C becomes as
follows,

C =

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1

 . (33)

The estimated return flow rate q̂l1 or q̂l3 is then used in the
bottomside estimator.

Nomenclature

α Momentum correction coefficient

β Bulk modulus of the drilling mud

λ , µ Eigen values

φ Bottom slope angle of the channel

ρ Density of the drilling mud

θ1, θ2 Boundary parameters

Aa Cross sectional area of the annulus

Ac Wetted cross sectional area of the channel

Am Cross sectional area of the active mud pit

C Measurement matrix of the UKF

c1, c2 Design parameters

Fa Friction factor of the annulus

fn A nonlinear function

g Acceleration of gravity

h Fluid level

hm Active mud pit level

I1 First moment of area

I2 Pressure forces in the fluid volume

J Productivity index

k Discrete time index

kchoke Choke coefficient

l Length

lc Length of the channel

lw Well depth

M A matrix

nm Number of measurements, UKF

ns Number of states, UKF

p Pressure

P1, P2 Output injection gains

p0 Atmospheric pressure

pr Reservoir pressure

Q Covariance matrix for process noise

q Volumetric flow rate

qbit Volumetric flow through the drill bit

qloss Fluid losses at solid removal equipment

qpump Mud pump flow rate

R Covariance matrix for measurement noise

t Time

Tf Non-Newtonian friction term

U Control input

u Transformed state, pressure

v Transformed state, flow rate

vk Measurement noise

wk Process noise

X States of the UKF

x Position along the channel length

y Measurement vector

z Position along well depth

zn Normalized position along well depth
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