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Abstract

In large droplets the internal resistance to heat or mass
transfer has to be accounted for. Two respective models
for low and high Reynolds numbers are investigated. The
models are solved numerically for a range of modified
Peclet numbers and the corresponding transfer numbers,
representing either the Nusselt or Sherwood numbers, are
determined. The results for each model are fitted to pro-
duce an expression that can be easily evaluated for use
in a CFD code. The fits has mean deviations of 0.63%
and 0.035% for the low and high Reynolds number mod-
els respectively. A proposed switching Reynolds number
is used to combine the models and the combined model
is compared to temperature measurements of free falling
water droplets. It was found that the model is in good
agreement with the data for the smallest droplets whereas
it deviates as much as 40% for the larger droplets in the
data set.

Keywords: internal circulation, mass transfer, heat
transfer, droplets, CFD

1 Introduction

The droplet diameter in sprays with a large mass flow are
typically in the order of 1073 - 1073 m. When modelling
heat and mass transfer for small droplets, the transfer co-
efficients inside the droplets can be assumed to be infinite,
and the overall transfer coefficients can be determined ex-
ternally, by utilising correlations such as the Frossling-
Marshall equation (Bird et al., 2002). However, in larger
droplets the heat and mass transfer coefficient is signifi-
cantly lower and this must be taken into consideration.
Processes involving sprays are often complex two-phase
flow with many different types of interactions between the
gas and liquid. Computational fluid dynamics (CFD) is
an exceptional tool for capturing the respective gas-liquid
interactions. As CFD requires relatively large computa-
tional capacity, the models used to describe the gas-liquid
interaction should be fairly simple to evaluate, so as to
limit the computational resources necessary.

2 Governing Equations

When modelling a two phase flow, the transfer of heat and
mass are expressed as functions of intrinsic phase proper-
ties, that being temperature or mass concentration. The
flux across the droplet interface can be described from
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both the gas and droplet side as:
J =K (q)g — ¢£f) (gas side)
J=Ky <¢éf — ¢d> (droplet side)

where j is the flux across the interface, ¢ is the driving
potential, e.g. mass concentration or temperature of the
phase on the gas or droplet side, ¢/ is the potential at the
interface and x is the transfer coefficient on each side of
the interface.

For larger droplets the internal movement of liquid
causes a non-uniform distribution of the transfer quantity,
which in turn causes the transfer coefficient to vary de-
pending on the distribution of mass or heat. To describe
the heat or mass transport inside the droplet a continuity
equation can be expressed for the quantity of interest as:

a—q) +Vup =V (I'Vy)
ot
where u is the internal droplet velocity, and I' is the mass
or thermal diffusion coefficient.

In the analysis below, the following assumptions are

made:

ey
2

3

A. 1 The droplet is spherical

A. 2 The fluid of the droplet is incompressible and viscous

A. 3 Fluid properties are constant throughout the droplet

and independent of ¢

A. 4 The distribution of ¢ and velocity field is axisymmet-

T1C

A. 5 The velocity field time independent

A. 6 The droplet interface is at equilibrium with the gas

phase
2.1 Low Reynolds Model

At low Reynolds numbers the streamlines described by
(Hadamard, 1911) can be used to calculate the velocity
field within the droplet. The streamlines are shown in the
right half of Figure 1. The streamline function in spherical
coordinates can be given as:

o0t (2 25) ) -]
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where r and 0 are the coordinates with origin at the cen-
tre of the droplet, u,; is the relative velocity between the
droplet and gas, u is the dynamic viscosity of the gas and
droplet respectively and a is the radius of the droplet.

The respective velocity components can be derived
from the stream function in Equation 4 by (Munson et al.,
2013):

B 1 dy(r,0)

YT 2sin(0)  de )
B 1 dy(r,0)

"o = _rsin(G) dr ©

This approach has previously been investigated by
Wellek et al. (1970), where the continuity equation pre-
sented in Equation 3 is rearranged to make it dimension-
less.

Figure 1. Streamlines inside the droplet. On the left side is the
tori streamlines for the high Reynolds model and on the right
side is the Hadamard streamlines for the low Reynolds model.

The dimensionless transport equation in spherical coor-
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dinates is given as:

od 1], 21 9@ 9’°d
W+Z [Pe (1—R2)cos(9)—R} R IR
1|, 2R —1) cot(6)| 0@ 1 9%®
2Tk TR |98 maer 0 D
T
T = 2a)? ®)
Pe/:< a >Pe ©)
Mg + Hq
pe = 12 (10)
rR=" )
a
o) —9(0)
= 12
5(=)—6(0) 12

Where 7 is the Fourier number, Pe’ is the modified Peclet
number, R is the relative radial position and ® is the nor-
malised mass or heat.

By making Equation 3 dimensionless a solution for a
given Pe’ can be used independent of the specie or liquid
in question.

For the limiting cases where the transfer is dominated
by either diffusion or convection i.e. Pe = 0 or Pe = oo,
there are analytical solutions. These are expressed as vol-
ume averages of the quantity of interest over the droplet,
which can be given as:

@:/¢w
\%

For the case of pure diffusion the solution of Equation 7
can be given as (Newman, 1931):

13)

_ 6 & 1
P=1- ;n; 5 €Xp (—n*n?7) (14)

where @ is the volume averaged quantity of interest and V
is the droplet volume.

For the other case where the transfer is dominated by
convection a solution was found by separation of variables
(Kronig and Brink, 1951). This method results is an infi-
nite sum where each addition requires a new coefficient
and an eigenvalue. In the original work only one set of co-
efficients and eigenvalues was found. Later the number of
coefficients and eigenvalues where extended (Oliver and
Souccar, 2006). The solution can be given as:

- 3
d=1-2 ZlAﬁexp(—léanr)

15)

n—=
where A, and A, is the respective coefficient and eigen-

value to the ' addition to the sum.
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2.2 High Reynolds model

For a droplet at high Reynolds number a model based on
the streamlines being replaced by a system of tori is used
(Handlos and Baron, 1957), see the left half of Figure 1. In
this model the transfer inside the droplet is based on eddy
diffusion, which is expressed as function of the relative
radial position inside the tori system. As only the tori are
responsible for the transfer mechanism, the volume that
contributes to transfer is 59% of the entire droplet.

The transfer equation for the high Reynolds model are
given as:

b P19 3 o P
9 —ImTat ((64 —8(%+3¢) ac) (16)
(17)

where { is the coordinate centred at the tori.

A solution for the high Reynolds model was given by
(Olander, 1966), but this is only valid for Pe't/128 > 0.1.
The solution presented by (Olander, 1966) is given as:

_ 2.80P¢
d=1-0.64exp <—128”>

With the limitation of Equation 18, it will not be used di-
rectly further analysis, but it will still be used to validate
the implementation of the model.

(18)

2.3 Boundary Conditions

For the boundary at the surface of the droplet, assumption
A. 6 gives the following condition:

®(1,7) = 1 (19)

For the low Reynolds model the boundary condition at
the droplet halves can be given as:
dP(R,0,7) JP(R,7,7T)
) — ) 9 — O 20
26 26 20

2.4 Transfer coefficient

The classical transfer models for heat or mass are typically
correlated to each of their respective dimensionless group
which can be expressed as:

Kq (261)
r
where N; is the Sherwood or Nusselt number.
To determine the dimensionless group for the quantity
of interest, it has to be correlated to ®. By defining the di-
mensionless flux across the droplet interface and rewriting
Equations 2 and 21 to express the transfer coefficient and
an expression for N; can be found (Andoe, 1968):

Nt:

2D

2d4dd
J==-— 22
3dt (22)
j J 2
K=t — == (23)
O = Opa 1-o T
J
N, = = 24
T 24)
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Following the method presented in (Kronig and Brink,
1951) and (Handlos and Baron, 1957), NV; is evaluated for
a given Pe’, when ® = 1 —e~! =~ 0.632

3 Computational Methodology

Due to the difference in the nature of the governing equa-
tions, each model is solved using a different method. For
the low Reynolds model the solver scalarTransportFoam
from the open source package OpenFOAM is used to
solve Equation 7 (Weller et al., 1998). OpenFOAM is
written for Cartesian coordinates, therefore Equation 7 is
rewritten into the form of Equation 3. Here the velocity
components are given as:

uy = u,cos(0) — Rug sin(0)
uy = u,sin(0) + Rug cos(H)

(25)
(26)

The discretisation scheme used for the divergence terms
is second order upwind, and the time scheme is Crank-
Nicholson.

A structured axis symmetric mesh is created for the
droplet half where the centre axis of the droplet is the sym-
metry axis. Three different meshes with increasing mesh
densities of 2400, 5400 and 9600 cells are investigated for
varying Pe’ to ensure that the solutions is independent of
the mesh density. The time step for the different meshes
where handled by defining a maximum allowable Courant
number of 0.5. In Figure 2 the results for three differ-
ent mesh densities are shown. It can be seen that there is
no significant difference between solution on the different
meshes. With a relative difference below 0.1% between

Tat ®=0.632
0.051
L 0.041
0.031
Difference between consecutive meshes
03] — 2400-5400
R 7| —— 5400-9600
302
C
g
0.1
=
0.01 /
10! 102 103 104

Pe'

Figure 2. The top plot shows the dimensionless time for the
three different mesh densities at different modified Peclet num-
bers. The bottom plot shows the relative difference between the
consecutive meshes.
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the mesh with 5400 and 9600 cells, the mesh with 5400
cells are used for further analysis.

For the high Reynold model, Equation 16 is discretised
using a second order accurate central finite difference ap-
proach. The first and second derivatives are expressed as:

0P D —D

TSN 7
’d D —20+P_,
PISh AL? (28)

For the dimensionless time a forward Euler approximation
is used.

Just as for the low Reynolds model, an independence
test was done to ensure that the solution is independent of
the discretisation. In Figure 3 the value of T when & =
0.632 is shown for different values of the modified Peclet
number Pe’.

Tat ®=0.632

—e— Pe' =500

x1072

5.130

5.125

5.120

x1072

2.566
—4— Pe' = 1000

2.564
* 2562

2.560

x1073

2.568 Pe' = 10000

2.566
2.564

30 60 90

Number of radial points

120

Figure 3. Independence test for the high Reynold model. The
value of the dimensionless time T when ® = 0.632 is shown at
varying modified Peclet numbers for different number of radial
points used to discretise the droplet.

With a relative difference of 0.013 % or less, between
the solution with 120 and 90 radial point for the inves-
tigated Pe/, the discretisation with 90 radial points are
used for further analysis. A study of the dimensionless
time step was also done, and it was found that a value of
1 x 107% was adequate for all the modified Peclet num-
bers.

31

As a final validation of the computational methodology,
the numerical results from both models are compared

Model Comparison
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with Equations 14, 15 and 18. The solution for the low
Reynolds model at P’ = oo is approximated by setting
Pe’ = 10*. The comparison for the high Reynolds model
are shown for Pe’ = 500.

Model Validation
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0.61

e

0.4 A Newman
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Figure 4. Comparison of the low and high Reynolds model with
known solutions to their respective set of equations. On the bot-
tom of the figure, the contours for the low and high Reynolds

model are shown for ® = 0.632 .

The output from the low Reynolds model at P’ = 0
and Pe = oo agrees well with solution of Equations 14 and
15, respectively. As stated by (Olander, 1966) the expres-
sion in Equation 18 is only accurate for Pe’t/128 > 0.1,
which is why the first point of comparison deviates from
the model results, whilst for the remaining points it agrees
with model.

4 Results

The models for low and high Reynold number are run over
a span of modified Peclet numbers ranging from 0 to 10*
and the transfer number is evaluated for each modified
Peclet number. The resulting transfer numbers are shown
in Figure 5:

To get an expression for the transfer numbers as a func-
tion of Pe’ the two curves shown in Figure 5 are fit-
ted using least-squares. The curve for the low Reynolds
model transfer numbers resembles that of a step response
to an under-damped second-order system shifted by an
amount equal to that of the transfer number of the so-
lution presented by (Newman, 1931), when Pe’ < 1000.
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Transfer numbers

—— Low Re

102{ — High Re
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Figure 5. Resulting transfer numbers for the low and high
Reynold model at varying modified Peclet numbers.

For Pe’ > 1000 it resembles that of a damped oscillation
with a mean value equal to that of the transfer number for
the solution presented by (Kronig and Brink, 1951). The
transfer numbers for the solutions presented by (Newman,
1931) and (Kronig and Brink, 1951) are given as:

(29)
(30)

Ny = 7.551
Niw =19.18

With these remarks in mind the following equations
can represent the transfer numbers for the low Reynolds
model:

For Pe’ < 1000:

Nijow = a1 =b-exp(—c-P)sin(d - P’ +¢)] +Nyom
(31)
For Pe' > 1000:
N jow =b-exp(—c-Pe)sin(d-Pe' —e) + Ny,  (32)

The coefficients for Equations 31 and 32 are presented
in Table 1 below:

Table 1. Coefficients for the low Reynolds model fit.

Model a b c d e
Low 1.249 1.030 1269 5.169 1.677
<101 %109 %1073 %1073 x10°
High - 3.013 5.149 6508 2.575
x10°  x10~* %1073 x10°

The maximum error between the fit for the low Reynold
model and numerical results is 3.8% and the mean error is
0.63%, which are acceptable considering numerical uncer-
tainties.

The fit for the high Reynolds model is simply a linear
equation, which is given as:

N, pigh = 1.523 x 1072 - Pe/ (33)
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The maximum and mean errors for the high Reynold
model are 0.035% and 0.025%, respectively.

With the fits for the two models made these are com-
bined into a single expression for the transfer number. It
is proposed that the switching between the two models are
determined by a switching Reynolds number, such that:

N, =neg(Re — Reg )Ny o+ PosO(Re — Regy, )Ny pign (34)

where Re is the external Reynolds number and Rey, is the
switching Reynolds number.

The function neg(x) = 1 for all negative values and
neg(x) = 0 for all positive. The function pos0 is the oppo-
site and includes 0 such that pos0(0) = 1.

5 Validation

For the model validation the experimental data from (Yao
and Schrock, 1976) is used. In this study water droplets
with diameters of 3, 4 ,5 and 6 mm are investigated . The
average temperature of the droplets are sampled at varying
points throughout a free fall of 3 m. Yao and Schrock
(1976), made three experiments per droplet diameter at
varying relative humidity of the surrounding air.

The experimental setup is modelled in an Euler-
Euler framework, using the OpenFOAM solver reactingT-
woPhaseEulerFoam (Rusche, 2003). The governing equa-
tions for the two-phase system are given as:

d
o (cipii) +V - (cipie) = Y i (35)
J

d S
5 (0piu;) +V - (ctipju;) = =0V p+V (014 Vu;) + ) Fi;

J
(36)

where ¢ is the volume faction of the ith phase, p; is the
density of the ith phase, u; is the ith phase velocity, ). ;m
is the mass transfer between the phases, p is the common
pressure, and F; j 18 the volumetric forces acting on the ith
phase.

The forces considered to match the experimental con-
tritions are gravity and drag. Where the drag coefficient
for the liquid droplets are given as (Holterman, 2003):

24 0.52
<R> + 0.320-521
e

To account the effect of the relative humidity of the sur-
rounding air, the temperature and mass concentration at
the interface between the droplet and air has to be mod-
elled. The temperature at the interface can be calculated
by combining Equations 1 and 2 and adding the heat of
evaporation. To solve this equation Newton acceleration
is used. The initial guess is calculated without mass trans-
fer. The interfacial temperature can be updated as follows:

1/0.52

Ci= (37

Ko (TY —To) + 1, (TH = Ty) + 1
Ko -+ Ky + 9

T =T — (38)
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The mass transfer in the form of evaporation or con-
densation at the interface are determined by the satura-
tion pressure of water vapour, which is given by the Arden
Buck equation:

Psat (TL) =

T T
611.21exp ((18.678 234.5) <257-14+Tc>) (39)

where p;, is the saturation pressure given in Pa and 7; is
the temperature in degrees Celsius.

The Nusselts correlation for the external side of the droplet
are given as (Ahmed and M. Yovanovich, 1994)

P IFTT

1+ ()]

1
( 1+ Re)O.ZS

Nu=2+0.775Re%* (40)
’)/ —

The simulation is 2-D, were a small volume at the

top of the domain is prescribed a volumetric fraction of

water of 0.005 with the temperature reported by (Yao
and Schrock, 1976). The small volume of water and the
computational mesh is shown below:

Figure 6. Computational mesh and the droplets at rest in the
volume at the top of the domain.

In the simulation the sides are given a symmetric

length of the domain is 4m to ensure that the boundary at
the bottom does not interfere with the results. The tem-
perature of the air is kept at a constant temperature, corre-
sponding to that reported for the individual experiments.
It was found the switching Reynolds number Rey,, pro-
posed in equation 34 should be 400, to produce the best
match with the experimental results.
The results of the simulations are compared with the ex-
perimental results, and are shown in Figure 7:

Validation of model results

*  3mm
m 4mm *
5mm *
® 6mm *
4
n ***
" *
o %
—_ *
X ]
]
~ 31 *
< A
T &
C
2 oh Fu/s
= >
82 -
i o
ad
s
1{ g
L)
o
0
0 1 2 3 4 5
Model AT [K]

Figure 7. Simulations results compared with the experimental
results of (Yao and Schrock, 1976). The results are presented as
temperature decrease of the water droplets as it falls from rest.

It can be seen from Figure 7 that the simulation under
predicts the decrease in water temperature as the diameter
of the droplets increases. In the worst cases the results
deviate by 40% compared to the experimental data.

6 Conclusion

Two models for large droplets with internal circulation
have been investigated and an expression for the trans-
fer number, Nusselt or Sherwood, has been found as a
function of the modified Peclet number. The equations
describing the fit of the numerical results were found to be
within a satisfactory margin of error compared to the nu-
merical results with a maximum error of 3.8%. A switch-
ing Reynolds number was proposed as a method for com-
bining the two models.

The model for the droplets was implemented in a two-

boundary condition, to avoid any wall effects. The total phase simulation, and compared to experimental data for
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droplets experiencing free fall. The results of the simula-
tions were compared with the experimental data and it was
found that it under predicts the temperature decrease of the
falling droplets. As the diameter of the droplet increases
so does the error between the simulation and experimental
data. In the worst case the simulated results deviates as
much as 40%.
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Nomenclature

Symbol Description Unit

a Droplet radius m

Ay Coefficient for Equation 15 -

Cy Drag coefficient -

F Volumetric force Nm3

. Jm2s7!

J Heat or mass flux kgm2 5!

J Dimensionless surface flux -

7 Mass flow kg s™!

N; Transfer number -

Nu Nusselts number -

p Pressure Pa

Pe Peclet number -

Pe' Modified Peclet number -

Pr Prandlt number -

r Radial coordinate m

R Dimensionless i
radial coordinate

Re Reynold number -

Sh Sherwood Number -

t Time S

T Temperature K

u Velocity ms~!

|% Volume m>

a Volume fraction -

r Thermal qondgc.tivity m s
or mass diffusivity
Dimensionless tori centred

4 radial coordinate )

0 Angle -
Heat or mass Wm2K!

K . _
transfer coefficient ms~!

An Eigenvalue for Equation 15 -

u Viscosity Pas~!

P Density kgm3
Dimensionless time/

T . -
Fourier number

o>} Dimensionless potential -

= Volume averaged

0] . . . -
dimensionless potential

¥ Streamline m3 5!
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Symbol  Description
subscripts

c Celsius

d Droplet

g Gas

high High Reynolds model
i Phase i

j Phase j

low Low Reynolds model
nm Newman solution

kb Kronig and Brink solution
rel Relative

r Radial

SW Switching

0 Tangential

+1 Step forward

-1 Step backwards
superscripts

if Interface
abbreviations

CFD Computational Fluid Dynamics
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