
Fertilizer Granulation: Comparison of Modeling Languages

Amir Farzin, Ludmila Vesjolaja, and Bernt Lie

University of South-Eastern Norway, Porsgrunn, Norway, Bernt.Lie@usn.no

Abstract
Industrially produced fertilizers are of key importance to
produce enough food for a growing global population.
On-going work deals with models of the granulation loop
in fertilizer production, based on a population balance that
finds the particle size distribution of the product. The
model is intended for control design in order to dampen
or remove production oscillation for reduced energy con-
sumption and improved product quality. In this paper, ef-
ficiency of model implementation is studied in addition to
the possibility to automate the computation of a linear ap-
proximation of the model for control synthesis.

In the implementation study, the current tailor-made
MATLAB solver for the model was cloned in computer
language Julia. In addition, the implementations in both
languages (MATLAB, Julia) were rewritten in a form that
allows for use of the standard differential equation solvers
of the respective languages. Results indicate that by
changing from the tailor-made solvers to using the built-in
solvers leads to a speed increase in the order of 6 times.
Furthermore, results indicate that the Julia implementa-
tions are ca. 5 times faster than the MATLAB implemen-
tations. Overall, the fastest Julia implementation was 36
times faster than the current MATLAB implementation.
The MATLAB execution can be sped up by using MAT-
LAB Coder to convert the code to efficient C-code which
is then used to generate a DLL. DLLs can be executed
virtually without overhead from Julia. By measuring the
execution time for the C-code/DLL vs. a similar imple-
mentation in pure Julia, the pure Julia code is ca. 12%
faster than the compiled C code.

Next, the possibility of automatic linearization of the
population balance model in Julia is studied. This is
shown to be relatively straightforward. The linear approx-
imation is very good for an input perturbation of 10%, and
relatively good for an input perturbation of 50%. This in-
dicates that it may be possible to use a linear model ap-
proximation for control design.
Keywords: linear regression, nonlinear regression, ther-
mal model, machine learning, surrogate model, hybrid
model.

1 Introduction
1.1 Background
Industrially produced fertilizers are of key importance in
order to produce enough food for a growing global pop-

ulation. Fertilizers in the form of granules is allows for
simple application and spreading of fertilizers. The qual-
ity of such fertilizers are determined by the average size
and the size distribution of the fertilizer, as well as liquid
content and porosity. Granulation of fertilizers at times
lead to oscillatory operation, which widens the size distri-
bution and increases the energy consumption. It is of in-
terest to develop dynamic population balance models for
fertilizer production which describes the size distribution,
to some degree explains the product quality, and allows for
understanding of what operating conditions lead to oscil-
latory behavior. Dynamic population balance models are
partial differential equations in time as well as external
and internal variables. The external variables are spatial
position, while the internal variables are particle size, hu-
midity, porosity, etc. The result is that dynamic population
balance models are demanding to solve, both numerically
and because of the model size.

To be used for on-line production planning/control, it
may be necessary to solve the model much faster than real
time, e.g., in some types of state estimators and in some
types of optimization based control algorithms. It is there-
fore of interest to explore the possibility of optimizing the
model formulation for fast execution within a given com-
puter language, but also to explore whether different lan-
guages give different execution time. Some control algo-
rithms may use a linear model approximation. Because of
the complexity of the model, it is also of interest to study
whether the linearization of the model can be automated in
a given language. The ultimate goal of the population bal-
ance model is to see whether production with better qual-
ity and reduced energy consumption can be achieved.

1.2 Previous work
Population balances describe dynamic systems with both
external and internal coordinates, leading to highly dis-
tributed models which are time consuming to solve (Wang
and Cameron, 2007; Litster and Ennis, 2004; Iveson et al.,
2001; Ramkrishna, 2000). (Vesjolaja et al., 2018) describe
a population balance model for granulation of fertilizers,
including both growth by layering and growth by agglom-
eration. As a population balance model, the model is rela-
tively simple and homogeneous in the drum axial position
as external coordinate, and particle size as internal coordi-
nate. The two growth mechanisms require different types
of discretization algorithms. In this simple implementa-
tion, the particle size is discretized into 80 different sizes.
With 80 states in the model, the key output is the particle

SIMS 61

DOI: 10.3384/ecp20176188 Proceedings of SIMS 2020
Virtual, Finland, 22-24 September 2020

188



size median. The resulting model is relatively complex as
a dynamic model for control, but still simple as pertaining
a population balance model. In a future stage, models will
be extended with distribution in the external coordinate. It
is of interest to compare different modeling languages wrt.
solution efficiency.

The model is designed for control synthesis. Standard
controllers include proportional (P) and proportional + in-
tegral (PI) controllers, which often are tuned based on
some tuning rule, (Åstrøm and Murray, 2008). Controllers
of mid-level complexity are based on linear approxima-
tions of the model, e.g., root locus methods, synthesis
based on Nyquist, Nichols, or Bode diagrams, as well as
linear quadratic controllers (LQR) and linear Model Pre-
dictive Control (MPC), (Maciejowski, 2002). Thus, it is
also of interest to consider modeling languages wrt. how
they can aid in controller synthesis, e.g., by providing lin-
earized model approximation. Examples of popular lan-
guages for solving such models include MATLAB and
C++, but a recent, free language such as Julia (Bezan-
son et al., 2017) with an extensive package for solving
differential equations (Rackauckas and Nie, 2017) is an
interesting candidate. Julia uses Just-in-Time (JIT) com-
pilation with strong typing, and thus provides a bridge
between easy-to-use script languages and compiled lan-
guages. Julia also has other advantages with simple-to-
use, free packages for Automatic Differentiation (AD)
and linearization (Revels et al., 2016), simple-to-use, free
packages for computing with distributions (Besanon et al.,
2019) such as particle size distribution, etc.

1.3 Overview of the paper
The current model has been implemented in MATLAB
with a fixed, user-developed step-length RK4 solver, and
a user-developed routine for computing the median of the
distribution. We consider to replace the user-developed
routines in MATLAB with built-in routines from the ODE
solver tools to see if this can make the MATLAB imple-
mentation more efficient. Next, we consider implement-
ing the model in Julia and compare the execution speed
in Julia vs. that of MATLAB. Both a direct translation of
the user-developed RK4 solver and median computation is
used, as well as the use of Julia packages such as Differen-
tialEquations and Statistics. We also compare the execu-
tion time of the model written in pure Julia, vs. conversion
of the MATLAB model to C-code/DLL using MATLAB
Coder from MathWorks. Finally, we study how Julia can
be used for linearization of the model.

The paper is organized as follows. In Section 2, an
overview of the granulation process is given. In Section
3, key elements of the MATLAB implementation are dis-
cussed, with a comparison of the current implementation
vs. the use of the built-in ODE solvers. Next, implemen-
tation issues for Julia are discussed. Then, simulation re-
sults are provided, with a comparison of execution speed.
In Section 4, the possibility of automatic linearization of
the model using Julia is discussed, with some simple re-

sults. Finally, some conclusions are drawn in Section 5.

2 Overview of Industrial Granulation
2.1 Fertilizer granulation
Granulation processes are used in a wide range of indus-
trial applications, such as pharmaceutical and fertilizer in-
dustries. The research reported here is focused on the last
part of NPK (Nitrogen, Phosphorus, Potassium) fertilizer
production. A granulation loop is used to produce differ-
ent grades, i.e., various N:P:K ratios, of fertilizers. The
NPK fertilizer is a high value type of fertilizer contain-
ing the three main elements essential for crop nutrition.
Various NPK grades are specially developed for different
crops growing in different climates and soils.

2.2 Granulation loop
A typical schematic of a granulation process with a recycle
loop is shown in Figure 1.

The granulation loop consists of a granulator, a gran-
ule classifier (screens), and a double-roll crusher. Dur-
ing the granulation process, a slurry of liquid ammonium
nitrate and partly dissolved minerals is solidified to form
granules. Granules that are too small (under-sized parti-
cles) are recycled to the granulation unit, while granules
that are too large (over-sized particles) are crushed and
then recycled back to the granulator. Different granula-
tion mechanisms are responsible for the granule forma-
tion in the granulator, depending on the granulator type
and operational conditions. The granulator can be of dif-
ferent types, e.g., a spherodizer, a rotary drum granulator,
a fluidized bed granulator, a pan granulator, etc. Some
of the granulation mechanisms that are responsible for the
granule formation are particle growth due to layering and
particle agglomeration. Particle growth due to layering
is a continuous process during which particle growth oc-
curs due to a successive coating of a liquid phase onto a
granule. Binary particle agglomeration is a particle growth
mechanism that occurs due to successful collision of two
particles, resulting in the formation of a larger, composite
particle (Litster and Ennis, 2004; Vesjolaja et al., 2018).

2.3 Production challenges
Fertilizer manufacturing using the granulation process has
received considerable research interest during the last few
decades, due to (i) the increasing requirements for effi-
cient production of high quality fertilizers for increased
food production in a growing global population, (ii) dif-
ficult process control and operation. Process control of
granulation loops is challenging since the particle size dis-
tribution (PSD) of the granules leaving the granulator is
wider than the required PSD of the final product. A typ-
ical recycle ratio between the off-spec particles and the
required product-sized particles is 4:1 respectively. In ad-
dition, granulation loops may show oscillatory behavior
for certain operating points. Typical oscillations seen in
an-industrial scale fertilizer granulation plants is depicted

SIMS 61

DOI: 10.3384/ecp20176188 Proceedings of SIMS 2020
Virtual, Finland, 22-24 September 2020

189



Granulator: 

spherodizer or 

drum granulator

Slurry feed

R
e

c
yc

le
 f

e
e
d

 Crushed oversized and undersized particles

Screen 1

Screen 2

Product is collected

Roll 

crusher

Oversized particles

Product-sized 

particles

Undersized particles
Crushed oversized

 particles

Elevator

Figure 1. Granulation loop used in fertilizer industry.

Figure 2. Oscillatory behavior observed in PSD (measured as
d50) of the produced granules in fertilizer industry.

in Figure 2.

Control and operation of a granulation loop is still chal-
lenging. Some research papers with focus on process con-
trol of the granulation process are (Buck et al., 2016; Ra-
machandran and Chaudhury, 2012; Herce et al., 2017; Ra-
machandran et al., 2009; Valiulis and Simutis, 2009; Wang
et al., 2006; Cameron et al., 2005).

2.4 Problem limitation

Here, we consider a model of the drum granulator with
both layering and agglomeration, but we do not include
the screening or the recycling. The main purpose here is
to study the efficiency of model formulation and solution
in MATLAB vs. Julia, and the possibility to use modern
modeling tools for control analysis.

3 Model implementation details
3.1 Overview of model
The population balance for combined layering and ag-
glomeration is discussed in (Vesjolaja et al., 2018), and
is for form

∂n(L, t)
∂ t

=− ∂

∂L
(G ·n(L, t))+B(L, t)−D(L, t)+ ṅiγi− ṅeγe

(1)
where n(L, t) is the number density as a function of par-
ticle diameter L and time t, G is the growth rate relevant
for layering, B(L, t) is the birth rate relevant for agglom-
eration, while the death rate D(L, t) describes particle dis-
integration. ni is the influent number flow rate, γi is the
influent size distribution, while ne and γe are similar quan-
tities for the effluent. Here, perfect (external) mixing has
been assumed in the granulator drum. Alternatively to a
number population balance as in Eq. 1, it is often more
convenient to describe the mass population balance, where
m is related to n via

n =
6m

πρL3 . (2)

When discretizing the particle size space in Np particle
sizes, the mass population balance has the following form:

dM1:Np

dt
= fagg

(
M1:Np ;θ

)
+ fgrowth

(
M1:Np ,Ṁsl;θ

)
+ Ṁiγi− Ṁeγe,

where M1:Np is the vector of masses within the Npsize
ranges L1, . . . ,LNp , θ is some model parameter, Ṁsl is the

SIMS 61

DOI: 10.3384/ecp20176188 Proceedings of SIMS 2020
Virtual, Finland, 22-24 September 2020

190



feed rate of slurry fertilizer spray, and Ṁe is given by some
expression. The quality of interest for control is the me-
dian of the particle size distribution (PSD) in the effluent,
measured in particle diameter and denoted by d50,e,

d50,e = median
(
L,M1:Np

)
.

Introducing x = M1:Np ,u =
(
Ṁi,Ṁsl

)
, y = d50,e, we can ex-

press the model in the more abstract form

dx
dt

= f (x,u, t;θ)

y = g(x,u, t;θ) .

For the work reported in (Vesjolaja et al., 2018), the
mass-based model was implemented in MATLAB using a
tailor-made, fourth order Runge-Kutta (RK4) fixed step-
length solver with integral computation of d50,e including
conversion from mass to diameter, and storage of the out-
put d50,e.

3.2 MATLAB
It is of interest to rewrite the MATLAB code of (Vesjolaja
et al., 2018) and use the built-in MATLAB ODE solvers,
to see if the code can be made faster. Some advantages
of MATLAB are a rich toolbox suite, easy debugging, and
excellent documentation.

ODE solvers in MATLAB have the following call struc-
ture:

1 [t , x] = solver (odefun, tspan, x0, options)

where we considered the following solver alternatives:
standard solvers ode45, ode23, and ode113, as well
as stiff solvers ode15s, ode23t, and ode23tb. When
solved as ordinary differential equations, these solvers
only store the state, M1:Np , thus the output d50,e must be
computed by post processing. It is possible to solve dif-
ferential algebraic equations (DAEs) with MATLAB, e.g.,
introducing a singular mass matrix, but such a reformu-
lation is somewhat clumsy for certain types of problems
(e.g., with re-circulation), and DAE solver are slower than
ODE solvers.

MATLAB has decent support for computing quantiles
of distributions, e.g., d50,e of the particle size distribution
(PSD). However, because of the conversion from mass dis-
tribution to diameter distribution indicated in Eq. 2, sup-
port for quantile computation with weighting is required;
this is not supported in standard MATLAB. Because of
this, the original function for computing d50,e from the dis-
tribution M1:Np is preserved.

3.3 Julia
In order to compare how fast the model can be solved,
it is of interest to compare the MATLAB implementation
with an implementation in another language. Standard ref-
erence languages for speed are C/C++ and FORTRAN.
However, the relatively new language Julia which is a dy-
namic language in style, while using Just-in-time compi-
lation for execution, is also known to be fast — at least

when properly implemented. Julia has excellent packages
for differential equation solvers, and very good support for
statistics.

In general, Julia has relatively rudimentary documenta-
tion for packages compared to MATLAB toolboxes. Some
integrated development environments (IDE) with debug-
ger are starting to appear, but they are still inferior to
the MATLAB IDE. However, packages are, in general, of
good–excellent quality.

For comparison with MATLAB, first the tailor-made
RK4 solver used in (Vesjolaja et al., 2018) was trans-
lated more or less directly to Julia. Next, just like for
MATLAB, a rewrite of the code was made to take advan-
tage of the differential equation solvers in Julia’s pack-
age DifferentialEquations.jl. Every ODE solver
in MATLAB has an equivalent solver algorithm in Julia
(https://docs.sciml.ai/stable/solvers/ode_solve). Specifi-
cally, Julia versions of the non-stiff MATLAB solvers
were used: DP5 (ode45), BS3 (ode23), VCABM (ode113
). Because experiments with MATLAB indicated that the
system is non-stiff, stiff Julia solvers were not considered.
Finally, the standard Julia solver Tsit5 was used.

Julia has support for quantile computations with
weights, and in the rewritten code, this function was used
to compute d50,e.

3.4 C-code/DLL
MATLAB has tools for automatic conversion of code to
C-code and compilation into DLLs. Such DLLs can then
be included in Simulink blocks. It is also possible to call
DLLs from Julia virtually without overhead. This makes
it possible to compare the execution time of C-code vs.
Julia and MATLAB.

3.5 Comparison
In this section, two implementations of the granulation
drum model in each programming language will be com-
pared, i.e., 4 implementations (with some variation in
solvers). The tailor-made RK4 solvers (MATLAB and
Julia) will be referred to as TM-RK4. Next, we rewrite
the tailor made code to be in the standard forms for use
with built-in ODE solvers. For these, we refer to the code
with language name and solver, e.g., M-ode45 for solver
ode45 in MATLAB, and J-DP5 for the similar DP5 solver
for Julia.

Table 1 shows a comparison of run-time (execution
time) for MATLAB and Julia for simulation over 1.5h.
The results displayed are the best run out of 20 runs, with
Np = 80. For the tailor-made solvers, a step size of h= 10s
is used. Both for MATLAB and Julia, adaptive time step-
ping is used in the built-in ODE solvers. In general, Ju-
lia appears to use longer step-length and thus have fewer
steps. This could be because most Julia solvers include
interpolation of the solution for improved accuracy.

Finally, the model implementation with tailor-made
RK4 solver (TM-RK4) was converted to C-code/a DLL
using MATLAB Coder from MathWorks. This DLL re-

SIMS 61

DOI: 10.3384/ecp20176188 Proceedings of SIMS 2020
Virtual, Finland, 22-24 September 2020

191

https://docs.sciml.ai/stable/solvers/ode_solve


Table 1. Comparison of run time for the various implementations. TM: tailor-made, M: MATLAB, J: Julia. Columns for MATLAB
and Julia show absolute simulation time in seconds, and in parenthesis: computation time relative to the fastest combination.
Finally, the right-most column shows the relative run-time of MATLAB vs. Julia. In all solvers except the fixed step-length
TM-RK4 algorithm, absolute tolerance 10−6 and relative tolerance 10−3 was used.

Algorithm MATLAB Julia MATLAB/Julia
TM-RK4 171.2s (36) 40.3s (8.6) 4.25
M-ode45, J-DP5 29.4s (6.3) 6.2s (1.3) 4.74
M-ode23, J-BS3 40.7s (8.7) 6.0s (1.3) 6.78
M-ode113, J-VCABM 27.4s (5.8) 4.7s (1.0) 5.83
M-ode15s 59.3s (13) – –
M-ode23t 63.9s (14) – –
M-ode23tb 88.6s (19) – –
J-Tsit5 – 6.9s (1.5) –

turned f (x, t) in the ODE dx
dt = f (x, t) and was then called

virtually without overhead from Julia in an Euler integra-
tion loop, and the execution speed was compared to the
TM-RK4 method implemented in Julia and called in an
identical Euler integration loop. In this case, the pure Julia
implementation was ca. 12% faster than the C-code/DLL.
To have a 100% fair speed comparison, the model should
have been implemented 100% in C and Julia by experts
in the respective languages. However, the for loop in Ju-
lia for doing Euler integration is efficient, with most of
the computational load taking place in computing f (x, t).
Because of this, we believe that execution speed in Julia
is relatively similar to what can be achieved in C for this
type of problem.

4 Model linearization in Julia
For model-based control design, a linear approximation of
a model is often sought in form

dx
dt

= Ax+Bu

y =Cx+Du

where matrices A,B, C, and D are found as the following
Jacobians at the operating point ∗ given by (u∗,x∗):

A =
∂ f (x,u, t;θ)

∂x

∣∣∣∣
∗

B =
∂ f (x,u, t;θ)

∂u

∣∣∣∣
∗

C =
∂g(x,u, t;θ)

∂x

∣∣∣∣
∗

D =
∂g(x,u, t;θ)

∂u

∣∣∣∣
∗
.

The linear approximation is believed to give good approxi-
mation to the nonlinear model as long as the perturbations
in the system are “small” relative to the operating point
given by (u∗,x∗).

For complex models, it has traditionally been labori-
ous to develop a linear approximation. However, some

modern languages has support for Automatic Differentia-
tion for exact linearization. Commercial language MAT-
LAB has support for this, but since Julia is a free lan-
guage, it is of interest to see how this can be done in Ju-
lia. Julia has several packages for carrying out automatic
differentiation; here we use package ForwardDiff.jl
. Assume that we have found a steady operating point
(u∗,x∗). Next, we formulate specialized models for the
vector fields f (x,u) and g(x,u):

fx (x) :x→ f (x,u∗)
fu (u) :u→ f (x∗,u)
gx (x) :x→ g(x,u∗)
gu (u) :u→ g(x∗,u) .

By associating f_x= fx, f_u= fu, g_x= gx, g_u= gu, as
well as x_ast= x∗ and u_ast= u∗ , we can compute ma-
trices A, B, C, D as follows:

1 using ForwardDiff
2 A = ForwardDiff.jacobian(f_x, x_ast);
3 B = ForwardDiff.jacobian(f_u, u_ast);
4 C = ForwardDiff.jacobian(g_x, x_ast);
5 D = ForwardDiff.jacobian(g_u, u_ast);

We can now compare transients of the nonlinear model
and the linear model from a chosen steady state, and com-
pare, e.g., the final time mass distribution M1:Np in the ef-
fluent, and the output d50,e. Figure 3 shows the compari-
son with a 10% increase in the input u.

Figure 4 shows the comparison with a 50% increase in
the input u.

Figure 3 shows only 0.08 % error in d50,e in the linear
approximation for 10% change in the input u, which is
acceptable for many applications. Figure 4 shows 1.58 %
error in d50,e in the linear approximation for 50% change
in the input u, which perhaps is a large error for prediction
purposes, but even with this error, the indicated response is
not too different from the nonlinear model, and this error
can probably be compensated for by feedback control.

5 Conclusions
The outset of this study was an interest in comparing the
run-time for differential equation solvers for different lan-

SIMS 61

DOI: 10.3384/ecp20176188 Proceedings of SIMS 2020
Virtual, Finland, 22-24 September 2020

192



Figure 3. Comparison between linear and nonlinear models where both inputs increase 10%.

Figure 4. Comparison between linear and nonlinear models where both inputs increase 50%.

guages and different implementations. The test model is
a population balance model for the granulation drum of
fertilizer production, i.e., without product recycling. Such
models are of high order, and are relatively complex to
solve numerically. In order to use such a model in opti-
mization based control algorithms, it must be possible to
solve the model much faster than real time, so execution
time is an issue.

The original implementation of the model under study
was in MATLAB, and used a tailor-made implementation
of a 4th order Runge-Kutta solver in order to store/present
on-line the output, which is the median of the particle di-
ameter distribution. This implementation was transferred
to Julia for comparison.

In an extension of this rewrite to Julia, the MATLAB
code was rewritten from the tailor-made solver implemen-
tation to a form which can use the standard MATLAB
ODE solvers. Likewise, the Julia code was rewritten to
take advantage of the Julia solvers in package Differen-
tialEquations.jl. In both cases, every attempt was made to
make the code efficient, e.g., taking advantage of vector-
ization in MATLAB.

Speed comparisons indicate that Julia is typically ca.
5 times faster than MATLAB. Similarly, the results indi-
cate that utilizing the built-in solvers in the languages is
in the order of 6 times faster than using the tailor-made
solvers. To this end, the fastest Julia implementation is ap-
proximately 36 times faster than the original, tailor-made
MATLAB implementation.

Some experiments have been made with Julia DAE

solvers instead of the ODE solvers. The advantage with
DAE solvers is that one can compute outputs on-line in-
stead of by post processing. Although a thorough com-
parison has not been carried out, initial attempts indicate
that using DAE solvers approximately doubles the com-
putation time compared to ODE solvers.

Some initial attempts have also been made with im-
plementing the tailor-made solver in C. Specifically, the
MATLAB code was converted to C-code/DLL using
MATLAB Coder. The resulting DLL can be called from
Julia virtually without overhead, and the execution speed
was compared to that of the pure Julia code. The result of
this comparison was that Julia was ca. 12% faster than the
C-code implementation of the model.

Overall, the comparison between the three languages
MATLAB, Julia, and C indicate that for solving ODEs, Ju-
lia and C have relatively similar execution speed, in spite
of Julia being a scripted language — although with Just in
Time Compilation. Execution in both Julia and C is con-
siderably faster than in MATLAB. Using MATLAB Coder
makes it possible to regain the speed advantage of Julia;
however, Julia and the Julia eco-system is free.

In addition to speed comparisons, we have checked the
possibility of automatic linearization of the Julia code.
This can be done using available, free Julia packages, and
appeared to be relatively straightforward, with the linear
approximation of the granulation model being quite close
to the nonlinear solution in realistic cases. This indicates
that the linear approximation probably suffices for control
design. It is also possible to do such automatic lineariza-

SIMS 61

DOI: 10.3384/ecp20176188 Proceedings of SIMS 2020
Virtual, Finland, 22-24 September 2020

193



tion in MATLAB. However, because Julia is a free tool
while MATLAB is an expensive, commercial tool, explor-
ing that possible is perhaps less interesting.

Future work will focus on implementing Julia and
MATLAB code for the extended system with product
screening and re-circulation, as well as automatic com-
putation of a linear approximation for control design. In
a longer horizon, it is also of interest to consider possi-
bilities for solving the model over a distributed computer
network, or on GPUs.

Acknowledgment The economic support from The
Research Council of Norway and Yara Technology Centre
through project no. 269507/O20 “Exploiting multi-scale
simulation and control in developing next generation high
efficiency fertilizer technologies (HEFTY)” is gratefully
acknowledged

References
Karl Johan Åstrøm and Richard M. Murray. Feedback Systems.

An Introduction for Scientists and Engineers. Princeton Uni-
versity Press, Princeton, NJ, 2008. ISBN 978-0-691-13576-2.

Mathieu Besanon, David Anthoff, Alex Arslan, Simon Byrne,
Dahua Lin, Theodore Papamarkou, and John Pearson. Dis-
tributions.jl: Definition and modeling of probability distribu-
tions in the juliastats ecosystem. arXiv, 2019.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B.
Sha. Julia: A Fresh Approach to Numerical Computing.
SIAM Review, 49(1):65–98, 2017. doi:10.1137/141000671.

A. Buck, R. Durr, M. Schmidt, and E. Tsotsas. Model predictive
control of continuous layering granulation in fluidized beds
with internal product classification. Journal of Process Con-
trol, 45:66–75, 2016.

I.T. Cameron, F.Y. Wang, C.D. Immanuel, and F. Stepanek. Pro-
cess systems modelling and applications in granulation: A
review. Chemical Engineering Science, 60:3723–3750, April
2005.

C. Herce, A. Gil, M. Gil, and C. Cortés. A cape-taguchi com-
bined method to optimize a npk fertilizer plant including pop-
ulation balance modeling of granulation-drying rotary drum
reactor. Computer Aided Chemical Engineering, 40:49–54,
2017.

S.M. Iveson, J.D. Litster, K. Hapgood, and B.J. Ennis. Nucle-
ation, growth and breakage phenomena in agitated wet gran-
ulation processes: a review. Powder Technology, 117(1–2):
3–39, 2001.

Jim Litster and Bryan Ennis. The Science and Engineering of
Granulation Processes, volume 15 of Particle Technology Se-
ries. Kluwer Academic Publishers, Dordrecht, The Nether-
lands, 2004. ISBN 1-4020-1877-0.

Jan M. Maciejowski. Predictive Control with Constraints. Pren-
tice Hall, Harlow, England, 2002.

Christopher Rackauckas and Qing Nie. DifferentialEquations.jl
— A Performant and Feature-Rich Ecosystem for Solving

Differential Equations in Julia. Journal of Open Research
Software, 5(15), 2017. doi:10.5334/jors.151.

R. Ramachandran and A. Chaudhury. Model-based design and
control of a continuous drum granulationprocess. Chemical
Engineering Research and Design, 90(8):1063–1073, 2012.

R. Ramachandran, C.D. Immanuel, F. Stepanek, J.D. Litster, and
F.J. Doyle, III. A mechanistic model for breakage in popula-
tion balances of granulation: Theoretical kernel development
and experimental validation. Chemical Engineering Research
and Design, 87(4):598–614, 2009.

D. Ramkrishna. Population Balances. Theory and Applications
to Particulate Systems in Engineering. Academic Press, Lon-
don, 2000.

J. Revels, M. Lubin, and T. Papamarkou. Forward-Mode Au-
tomatic Differentiation in Julia. arXiv:1607.07892 [cs.MS],
2016. URL https://arxiv.org/abs/1607.07892.

G. Valiulis and R. Simutis. Particle growth modelling and simu-
lation in drum granulator-dryer. Information Technology and
Control, 28(2), 2009.

Ludmila Vesjolaja, Björn Glemmestad, and Bernt Lie. Pop-
ulation balance modelling for fertilizer granulation pro-
cess. In Lars Erik Øi, Tiina Komulainen, Robin T.
Bye, and Lars O. Nord, editors, Proceedings of the
59th Conference on Simulation and Modelling, pages 95–
102, Oslo Metropolitan University, Oslo, Norway, Septem-
ber 2018. SIMS, Linköping University Electronic Press.
doi:http://doi.org/10.3384/ecp181531.

F.Y. Wang and Ian T. Cameron. A multi-form modelling ap-
proach to the dynamics and control of drum granulation pro-
cesses. Powder Technology, 179(1–2):2–11, 2007.

F.Y. Wang, X.Y. Ge, N. Balliu, and I.T. Cameron. Optimal con-
trol and operation of drum granulation processes. Chemical
Engineering Science, 61(1):257–267, 2006.

SIMS 61

DOI: 10.3384/ecp20176188 Proceedings of SIMS 2020
Virtual, Finland, 22-24 September 2020

194

https://doi.org/10.1137/141000671
https://doi.org/10.5334/jors.151
https://arxiv.org/abs/1607.07892
https://doi.org/http://doi.org/10.3384/ecp181531

	Introduction
	Domestic Hot Water
	Aims and objectives

	Methodology
	Hot Water Demand Profile
	Hot Water Tank
	Heating Demand
	Heating Control
	Constant Temperature Set-point
	On-Off Controller
	Time-of-Use Heating
	Linear Optimization

	Inputs

	Results
	Robustness of the results
	Behaviour of DHW heating controls
	Flexibility of DHW
	Load profiles

	Conclusions
	Introduction
	System overview
	Floor heating
	Heated water tank: modification
	Transport of water in pipes
	Heat transfer from water to floor
	Structure of heated floor
	Heat transfer from water to aluminum
	Heat transfer to plates

	Heat transfer related to room

	Dynamic model
	Heated tank
	Floor heating/heat exchanger
	Board models
	Room model
	Model parameters

	Simulation results
	Conclusions
	Bibliography
	Introduction
	System overview
	Floor heating
	Buoyancy conductivity approximations
	Original stratification expression
	Log-sum-exp approximation
	Boundary layer approximation
	Comparison of approximations

	Transport delay in heating loop

	Simulation with buoyancy approximations
	Heated tank
	Heated tank + floor heating loop

	Model analysis
	Step response
	Parameter sensitivity
	Poles and zeros
	Bode plots

	Conclusions
	Bibliography
	Introduction
	Method
	Governing equation
	Numerical procedure
	Problem setup

	Results and Discussions
	Energy budget
	Performance of green façades in different climates and seasons
	Impact of convective heat transfer coefficient

	Conclusions
	Smart buildings
	Heat and power model
	Input data
	Climatic data
	Households characteristics
	Small-scale production system
	Simulation time resolution and horizon
	Electricity contracts

	Modelling framework
	Power consumption
	Thermal demand
	Optimisations

	Output data

	Down-scaling simulation
	Scaling and multiplying

	Results and discussions
	Power demand
	Power profile distribution
	Dataset comparison

	Thermal demand
	PV generation

	Conclusions
	Introduction
	Method
	Case study: Esbjerg District Heating
	Model
	Heat pump model
	Heat Pump System
	Control


	Heat Pump Concept Optimisation
	The Concept Optimisation Problem
	Micro-Genetic Algorithm
	Cost Function
	Cost: Coefficient of Performance
	Cost: Heating Capacity
	Cost: Investment and Depreciation Expense


	Results and Discussion
	Optimisation
	Convergence
	Optimised Heat Pump Concept

	Sensitivity Study
	Variations in Costs for Electricity
	Adjusting the Benchmark for Investment Cost
	Changes in Effects of Economy of Scale


	Conclusion
	Introduction
	Model Development
	Model Derivation
	Dimensionless Model
	Numerical Approach and Stability

	Results and Discussion
	Effect of Initial and Process Parameters
	Reduction of Energy Consumption
	Comparison with Reported Literature Values

	Conclusions
	Acknowledgments
	Introduction
	Background
	Previous work
	Overview of the paper

	Solution of the Counter-Current Heat Exchanger Model
	Linear regression
	Nonlinear regression
	Results and Discussion
	Conclusions
	Bibliography
	Introduction
	Hydro Power
	Modelica
	Goal and Scope

	Mathematical Description
	Mass Balance
	Momentum Balance
	Connecting Mass and Momentum Balance

	Implementing in Modelica
	Reservoir
	Parameters
	Basic Principles

	Connect Multiple Reservoirs
	Hydro Power Plant Model
	Simulations with Aurdalsfjord

	Discussion
	Implementation of Model
	Simulation Results

	Conclusion
	Introduction
	Background
	Previous studies
	Outline of the paper

	Surge tanks and their operation
	Simulated Responses
	Case study: Trollheim HPP
	Total Load Rejection (TLR)
	Effect of diameter of orifice and throat for TLR
	Total Load Acceptance (TLA)
	Partial Load Rejection (PLR)
	Partial Load Acceptance (PLA)

	Case study: Torpa HPP

	Results, and Discussions
	Conclusions
	Bibliography
	Introduction
	Background
	Previous studies
	Outline of the paper

	Model Developement
	Surge tanks
	Simple surge tank
	Sharp orifice type surge tank
	Throttle valve surge tank
	Air-cushion surge tank

	Draft tube
	Conical diffuser
	Moody spreading pipes


	Simulated Responses and Results
	Responses for surge tanks
	Responses for draft tubes

	Conclusions and Future Work
	Bibliography
	Introduction
	Lime Production
	Lime Shaft Kilns
	The Lime Kilns at SSAB Raahe

	Lime Kiln Modelica Model
	Total Model
	Combustion Model
	Pre-heating Model
	Cooling Model

	Model Calibration
	Simulation Results and Discussion
	Limitations in the Modelling

	Conclusion
	Introduction
	Application of PBE to granulation process in spherodizers
	Internal coordinate
	External coordinate

	Application of PBE to granulation process in rotary drums
	Simulation Results and Discussion
	Simulation Setup
	Simulation results for granulation in spherodizers
	Simulation results for granulation in rotary drums

	Conclusions
	Acknowledgment
	Introduction
	Population Balance Equation (PBE)
	Numerical schemes for layering term discretization
	Numerical schemes for agglomeration term discretization
	Hounslow's scheme
	Cell average scheme
	Fixed pivot scheme
	Kumar et al.'s new finite volume scheme

	Simulation Results and Discussion
	Simulation Setup
	Comparison of numerical solutions for layering process
	Comparison of numerical solutions for agglomeration process

	Conclusions
	Acknowledgment
	Introduction
	Background
	Previous work
	Overview of the paper

	Overview of Industrial Granulation
	Fertilizer granulation
	Granulation loop
	Production challenges
	Problem limitation

	Model implementation details
	Overview of model
	MATLAB
	Julia
	C-code/DLL
	Comparison

	Model linearization in Julia
	Conclusions
	Bibliography
	Introduction
	Governing Equations
	Low Reynolds Model
	High Reynolds model
	Boundary Conditions
	Transfer coefficient

	Computational Methodology
	Model Comparison

	Results
	Validation
	Conclusion
	Introduction
	Background
	Previous Work on Topside Sensing

	System Description
	Mathematical Models
	Estimation and Control Methods
	UKF
	Adaptive Observer
	The Choke Controller


	Results and Discussion
	Conclusions
	Appendix
	Adaptive Observer
	UKF

	Introduction
	Methods
	Simulation Environment Set-up
	Auto-Tune IADC

	Results
	Case 1: IADC performance in homogeneous formation
	Case 2: IADC performance against changing formations
	Case 3: IADC with ART

	Conclusion
	Acknowledgment
	Introduction
	Background
	Previous work
	Overview of paper

	Helicopter mechanistic model
	Laboratory helicopter
	Geometry of helicopter
	Kinetic energy of helicopter
	Potential energy of helicopter
	Helicopter torques
	DAE formulation of model
	ODE formulation of model

	Preliminary model fitting
	Experimental data
	Preliminary model fitting

	Hybrid model
	Neural torque extensions
	Equation discovery

	Conclusions and Future work
	Nominal parameters and operating conditions
	Bibliography
	Introduction
	Linear periodic differential systems
	Stability of periodic systems
	Control design
	Conclusion
	Introduction
	Methods
	Results and Discussion
	Conclusion and Future Work
	Testing ERP and MES with Digital Twins
	1 Introduction
	2 Pilot Production Environments
	2.1 Educational Cyber-Physical Factory
	2.2 FMS Cell

	3 Digital Twins
	3.1 Python web application
	3.2 Educational Cyber-Physical Factory
	3.3 FMS Cell

	4 Results and Discussion
	5 Conclusion
	Introduction
	Mathematical model
	Transport equations
	Interfacial forces
	Boiling model

	Computational Domain and Solution Procedure
	Results and discussions
	Conclusions
	Introduction
	Numerical Method for data generation
	Data Extraction

	Deep Neural Network Architecture 
	Results and Discussion
	Validation dataset
	Test dataset
	Interpolation datasets
	Extrapolation dataset


	Conclusion and Future Work
	Introduction
	Modelling methodologies
	Nonlinear scaling
	Steady-state modelling
	Dynamic modelling

	Recursive modelling
	Recursive nonlinear scaling
	Interactions

	Multimodel LE simulation
	Composite local models
	Intelligent systems
	Evolutionary computing

	Applications
	Steady-state LE models
	Dynamic LE models
	Decomposition in LE models
	Distributed parameter LE models

	Discussion
	Conclusions and future research
	Introduction
	Related Work
	The Rust Programming Language

	EpiRust Model
	Population
	Geography
	Disease Dynamics
	Interventions
	Simulation Loop

	EpiRust Implementation
	System Requirements
	Model Correctness
	Flexibility
	Scalability
	Performance

	Architecture

	Scenarios and Results
	Baseline Scenario
	Intervention Scenario
	Results
	Reproducing the results

	Conclusion and Future Work
	Acknowledgements
	Introduction
	Function Indexing
	Range of index in arities
	Heptavintimal index encoding

	Methodology
	Usage
	Logic minimization algorithm

	Circuit schematics
	Simulation results
	Discussion
	Conclusion

