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Abstract

Granulation processes are frequently used in the fertilizer
industry to produce different grades of mineral fertilizers.
Large recycle ratios and poor product quality control are
some of the problems faced by such industries. Thus, for
real time model based process control and optimization, it
is necessary to find an appropriate numerical scheme can
find solution of the model sufficiently accurate and fast.
In this study, population balance principles were used to
model particle granulation processes. Different numeri-
cal schemes were tested to find simple yet sufficiently ac-
curate solution schemes for population balance equation.
Numerical schemes were applied to find the solution of
both the layering term and the agglomeration term that
appear in the population balance equation. The accura-
cies of the numerical schemes were assessed by compar-
ing the numerical results with analytical, tractable solu-
tions. Comparison of the accuracy of numerical schemes
showed that a high resolution scheme with Koren flux lim-
iter function might be a good choice for the layering term
discretization, while a cell averaging technique and a new
finite volume method of Kumar et al. (2016) produce a
sufficiently accurate solution for the agglomer-ation term
discretization.

Keywords: population balance, numerical scheme, layer-
ing, agglomeration

1 Introduction

Granulation is a particle enlargement process during
which fine particles and/or atomizable liquids are con-
verted into granules via a series of complex physical pro-
cesses (Litster and Ennis, 2004). Here, the focus is on
modeling a granulation process used for mineral fertilizer
production. In the fertilizer industry, depending on desired
product properties, different types of granulators are used,
e.g., spherodizers and drum granulators.

Formation of the particles (granulation mechanisms)
depends on the granulator type and operating condi-
tions. Particle growth due to layering is predominant in
spherodizers. Layering is a continuous process (differen-
tial growth) during which particle growth occurs due to a
successive coating of a liquid phase onto a granule (Lit-
ster and Ennis, 2004). In drum granulators, on the other

1 ' ! 1
i i\ th i th

vt () V(D)™

' class 1 class 1 class |

1

IVi_l | Vi Vi1 l
. I . S I

Viczzz Vieiz o Viez o vgp

Figure 1. Size discretization into classes (cells) using linear
grid.

hand, particle collision occurs, and thus particle agglom-
eration contributes significantly to particle size change. In
this paper, binary particle agglomeration is assumed for
population balance (PB) modeling. Binary agglomeration
refers to a particle growth mechanism that occurs due to
successful collision of two particles, resulting in the for-
mation of a larger, composite particle. Thus, the agglom-
eration results in a reduction of the total number of parti-
cles, while the total mass remains conserved (Litster and
Ennis, 2004).

The operation of granulation plants at an indus-
trial scale can be challenging (Litster and Ennis, 2004;
Radichkov et al., 2006; Heinrich et al., 2003). Periodic
instability associated with the operation of the granula-
tion circuit has been reported. This causes the particle size
distribution (PSD) flowing out of the granulator to oscil-
late, thus making it difficult to maintain the desired prod-
uct quality, e.g., particle size. Thus, to address and solve
these challenges, it is essential to have a dynamic model
of the granulator that can further be used to design opti-
mal control structures. The model should be both simple
and sufficiently accurate to reflect the underlying phys-
ical mechanisms that take place in the granulator. The
resulting population balance equations (PBEs) are non-
linear in nature and are challenging to solve. Analytical
solutions of these PBEs are available only for ideal and
simplified cases, and thus for most of the cases, numer-
ical methods are needed to solve such PBEs. For real
time model based process control and optimization, it is
necessary to find an appropriate numerical scheme that is
sufficiently accurate and fast. Therefore, the main focus
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of this paper has been (i) investigation of the accuracy
of different numerical schemes that are suitable for dis-
cretizing PBEs by comparing the numerical results with
analytically tractable solutions; (ii) application of various
finite volume techniques (first order upwind, second or-
der central difference, and a high resolution scheme) to
the growth by a layering process; (iii) application of dif-
ferent sectional methods (Hounslow method, cell average
technique, fixed pivot scheme), and a new finite volume
method of Kumar et al. (2016) to the agglomeration
process.

2 Population Balance Equation (PBE)

Population balance (PB) is frequently used to describe
dynamics of particle property distributions, e.g., particle
size distribution, moisture content in particles and poros-
ity (Ramkrishna, 2000). The general form of a number
based PBE with particle size (x) as the internal coordinate,
spatial variation (z) as the external coordinate, and time ¢
as time coordinate is represented as

In(x,z,1) = _9 (Gn(x,z,t)]+ B (x,z,t) — D (x,2,1)

ot ox
d [dz

-3 dtn(x,z,t)}, (D)

where n(x,z,¢) is the number

1o } The first term on the right

[ mm3-[internal coordinate]

hand side represents the particle growth due to layering,
the second and third terms stand for particle birth and
death, respectively, due to agglomeration, while the last
term represents a continuous process and gives the flow
of particles through the granulator. G is the growth rate
[ internal coordinate] (Ramkrishna, 2000). The birth B and
death D terms usually include integrals that lead to partial
integro-differential equations which make the solution of
the PBEs complicated. Mathematical expressions for birth
and death terms are shown in Section 4 when describing
different numerical schemes for binary agglomeration.
Further simplifications of the general PBE (Eq. 1) are
possible and are dependent on the nature of the process
taken into consideration.

density function

At this point, it is convenient to define moments of par-
ticle size distributions that will be used later for discussion
of the simulation results. The /-th moment of the PSD is
defined as

u' = /waln(x)dx. ()

The first moments are of particular interest. Depend-
ing on the choice of internal coordinate (e.g., particle vol-
ume or particle length) the moments are related to the total
number, length, area, and volume of particles.
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3 Numerical schemes for layering
term discretization

PBEs are non-linear in general and analytical solutions
are available only for simplified processes. Thus, a sim-
ple 1-D batch process for which an analytical solution is
available is modeled so that the accuracy of the numerical
schemes can be reliably evaluated. In a batch granulation
process there is no continuous particle flow through the
granulator. If the particle size change in the granulator is
mainly due to layering (e.g., in spherodizers), and the size
of a particle is represented by its volume v, then Eq. 1
reduces to

dn(vt) 0
3 ——a—v[Gn(v,t)].

In Eq. 3, the concept of perfect mixing inside the granu-
lator is applied: particle property (e.g., size distribution)
inside the granulator is the same at every point inside the
granulator. In this paper, the solution to PBEs contain-
ing growth term G (Eq. 3) is found by transforming the
partial differential equation (PDE) into a system of ordi-
nary differential equations (ODEs), i.e., by reducing the
dimensionality of the problem with respect to the particle
size. The set of ODEs can then be solved using an appro-
priate time integrator. In this paper, a Runge-Kutta 4-th
order (RK-4) time integration method is used for all sim-
ulations.

For particle size discretization, first the particles are
classified into N, particle classes which are numbered by
i€{1,2,..N.} classes (cells) using a linear grid as shown
in Figure 1.

Here, i represents the i-th particle class, v; is the volume
of the particle of the i-th class, v, ! is the left and the right

3)

i) Vil is the
size of the classes. The dots in each class (Figure 1) repre-
sent the cell centers. Secondly, an appropriate numerical
scheme is applied to convert Eq. 3 into set of ODEs. Inte-

gration of Eq. 3 over cell i from v, 1 to v, ! gives

boundaries of the i-th class, and Ay =1v

+

dNi(1)

ar = O () () =6 (np)n ().
“)

In a simplified case, a solution of Eq. 4 can be found an-
alytically: The particle growth due to layering in a batch
process does not change the total number of particles in
the batch, but only the particle volume is changed. If 7 de-
notes the time for particle growth, vj,itia1 denotes the ini-
tial volume of the particles (for all classes), and G is the
constant growth rate, then the new volume (v;,) of the
particles after the growth due to layering is given as

(&)

Vnew = Vinitial +1 - G.

However, in real applications, analytical solutions are dif-
ficult to obtain, and, thus various numerical schemes are
applied to approximate the right hand side of Eq. 4. The
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PBE represented by Eq. 3 is a hyperbolic equation due
to the layering term, and Eq. 3 can be approximated us-
ing a finite volume scheme that automatically incorporates
conservation of number in a growth process.

In this paper, three finite volume schemes are compared
for particle size discretization, namely a first order upwind
scheme (FU) and a second order central difference scheme
(SCD). The first order upwind (FU) scheme uses the ap-
proximation defined by Eq. 6 and 7:

(6)

and

1
n (v pot) = 5o NGO @)
Thus, approximation of Eq. 4 using the FU scheme leads
to
dN; 1

dt ~ Av

G (v )N =G (vipy ) NO)] . ®)
Assuming constant growth rate in all cells, Eq. 8 simpli-

fies to U
dN: G
L ~— [Nj_1(t) — N;i(1)].
" TN (6) -~ V()]

The second order central difference (SCD) scheme uses
the approximation

(€))

L [Nea() +Ni(0))]
n(vept) gy a0
and
L Ni(t) + Niy1 (1))
n(vi+%,t) Y s (1)

Thus, discretization of Eq. 4 over a cell i using the SCD
scheme results in
dNYP G [Nia(1) = Nipa (1)]
dt Av 2 ’

12)

where particle growth G is assumed constant in all the
cells.

A finite volume scheme that is extended by a flux lim-
iter is also applied to Eq. 4 to reduce the dimensionality
of the PBEs with respect to the particle size. In particu-
lar, the Koren flux limiter function (Koren, 1993) is used
to achieve a robust upwind discretization scheme to Eq.
4. High resolution schemes are considered to attain higher
accuracy than the first order upwind schemes. In addition,
these methods avoid spurious oscillations by applying a
high order flux in the smooth regions and a low order flux
near discontinuities (Koren, 1993; Kumar, 2006). Assum-
ing constant G in all cells, Eq. 4 can be discretized with
the Koren scheme as

)= ()]

ANKFL
a =Y [n (Vf—

(13)

D=

x50 () Wia0) —Ni_zu))] . (4
and

n(vnt) e [N+ 20 (80) - (Ni(0) — N1 (1))
2 Av 2 2
(15)

Here, ¢ is the limiter function defined as

) (5) = max [O,min (25,min (; + 236,2>>] . (16)

Parameter 0 is defined as,

g . — Ni—Ni_1+X 6 | —
-5 = v Vidt T
2 Ni1—Nia2+yx 2

Niy1—Ni+x

, (A7)
Ni—Ni1+%

with a very small constant ¥ (e.g., 10~®) to avoid division
by zero.

4 Numerical schemes for agglomera-
tion term discretization

PBE for a batch agglomeration process using the particle
volume as internal coordinate is given by

an(v,z,t)
dt

Here, the particle birth (B) and death (D) due to binary ag-
glomeration are modeled using the Hulburt and Katz for-
mulation (Hulburt and Katz, 1964). For a pure agglomer-
ation process, the Hulburt and Katz equation (Hulburt and
Katz, 1964) is given as

=B(v,z,t) =D (v,2,1). (18)

E/OVB(t,vfe,s)n(t,vfe)n(t,e)de
—n(t,v)/o B(t,v.€)n(t,€)de. (19)

Equation 19 represents a 1-D batch process assuming per-
fect mixing inside the granulator. In Eq. 19, B is the
agglomeration rate (kernel) that defines the collision fre-
quency of the two particles with volumes v and v — €.
Agglomeration is a discrete event, and PB modeling
of the agglomeration process results in partial integro-
differential equations. The integral function appears in the
birth (B) and death (D) terms in Eq. 19. Such systems
are difficult to solve, and analytical solutions are avail-
able only for a limited number of simplified problems.
Some of the analytical solutions for different initial condi-
tions and different agglomeration kernels (e.g., constant,
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sum and product kernels) are given in Scott (Scott, 1968).
Here, for simplicity, the performance of different numeri-
cal schemes has been assessed using a constant agglomer-
ation kernel with an exponential initial distribution:

N _
n(v,0) = ~exp <V> , (20)
Vo Vo
is given as
4N, -2
n(vt)= 0 5exp ( X ) ) 21
vo (@ +2) (@+2)

In Equations 20 and 21, Ny and vg represent the initial
number of particles per unit volume and initial mean vol-
ume of the particles. The dimensionless volume unit K,
and the dimensionless time variable @ are given by Eq.
22:

1%
K=—, and @ ZN()ﬁot.
Vo

(22)

As a result of particle agglomeration, the total number of
particles reduces while the total mass remains constant.
The main challenge is to find/develop approximation tech-
niques that would assign the newborn particles accurately
while conserving the chosen moments. To achieve this,
various numerical methods for expressing the agglomera-
tion term in PBEs are developed, among others the method
of moments, the method of successive approximations, the
finite volume methods, and the sectional methods. A re-
view of various numerical techniques is summarized in
(Ramkrishna, 2000). This paper focuses on applying dif-
ferent sectional methods, as well as a newly developed fi-
nite volume technique by Kumar et al.’s (Kaur et al., 2017;
Singh et al., 2015; Kumar et al., 2016).

Approximation of the continuous size distribution by a
finite number of size sections (cells) has been made using
a geometric type grids, i.e., the whole particle size inter-
val is divided into a finite number of cells (classes) using
geometric progression. This type of grid has been chosen
because Hounslow’s discretization method, one of the nu-
merical schemes being compared, can be applied only to
geometric type grids. The choice of numerical schemes
has been made based on suitability for further applica-
tion of the model for control purposes, i.e., the scheme
should posses simplicity in implementation and be suffi-
ciently fast (low computation time), while producing rela-
tively accurate numerical results.

4.1 Hounslow’s scheme

According to Hounslow’s discretization scheme (Houn-
slow et al., 1988), the approximation of the continuous
size distribution by a finite number of cells is performed
using a geometric grid with a factor of two in size, i.e.,
vit+1 = 2v;. Hounslow’s discretization scheme (H) is based
on four binary interaction mechanisms that can contribute

to particle births in the i-th cell, while the other two mech-
anisms contribute for particle deaths in the i-th cell. Ap-
plication of the H scheme to the agglomeration process
(Eq. 19) gives the total rate of change of particles in each
i-th cell as

dNH

i-2

] . 1

dtl =Y 2/ l*‘Bi_Lle-_le—i—EB,-_1,,-_1N,-2_1—
=

i—1 N
N; Y 277Bi iN;—N; Y Bi N (23)
j=1 j=i

Here, the first term on the right hand side represents the
births of particles that are formed due to collision of par-
ticles in the (i — 1)-th cell with the particles from the first
to the (i — 2)-th cells. The second term on the right hand
side stands for the births of particles that are born in cell
i by the collision between two particles in the (i — 1)-th
cell. The last two terms in Eq. 23 accounts for the death
of particles in the i-th cell.

4.2 Cell average scheme

The cell average (CA) scheme was introduced by Kumar
(Kumar et al., 2006; Kumar, 2006). The CA scheme can
be applied to both a geometric grid and a linear grid.
Here, a geometric grid discretization has been chosen to
be able to compare simulation results with the Hounslow’s
scheme. In the CA scheme, at first the total birth of parti-
cles in each cell denoted by B; is computed:

>k

NC,[ )
EILED)
j=1

Jk

1
<1 - 25jk> BjkN N, (24)

where the two aggregating particles with volumes v; and
vy should fulfill the condition v, 1 <vitw <v, 1 0;j

is the delta Dirac function such that & ik = 1 for j =k, oth-
erwise 8, = 0; B is the agglomeration kernel for binary
agglomeration of particles from the j-th and the k-th cells.

Then the average volume of the newly formed particles
in each cell denoted by 7; is calculated. The average vol-
ume of the particle is then given as

Nc.i i »J >k
YioviBl TXR (1= 38) BiViNe (v +vi)

. >k
Bi Yo (1= 38) BN

P =

(25)
The next step in the CA scheme is to assign the total
birth of particles B; appropriately to different cells depend-
ing on the position of the average volume of all newborn
particles relative to the cell center volume v;. In total,
there are four birth contributions at node v;: two coming
from the i-th cell itself (when V; < v; and v; > v;), and two
from the neighboring (i — 1)-th and (i 4 1)-th cells (when
Vi1 > vi—1 and V;j11 < vi+1). To combine all the possi-
ble birth contributions, for convenience the dimensionless
term A" (v) is introduced:

to changes of particles number in the i-th cell. Two of AE(v) = VT Vil (26)
these four mechanisms change the number of particles due ' Vi — Vil
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The discretized PBE using the CA technique takes the

form of

@ :Bl(':A_DICA7

7 27

where
B =B A (vim1) H (Pim1 —viz1)
+Bi7tl-7 (\7,')H (V,‘ — 17,') +Bi)’i+ (\7,')H (\7,' — V,‘)
+Bi1 A" (is1) H (vig1 —Vi1),  (28)

and N
DA =N Y BixNi. (29)
k=1
Here, the Heaviside step function H is given as
1, ifv>0
Hv)=< 1%, ifv=0 (30)
0, ifv<O.

4.3 Fixed pivot scheme

The fixed pivot (FP) technique was developed by Kumar
and Ramkrishna (Kumar and Ramkrishna, 1996). The
scheme is based on the Hounslow’s method, however, the
disadvantage of using only geometric grids with Houn-
slow’s method is eliminated in the fixed pivot scheme.
This scheme can be used with any type of grid includ-
ing linear grids. Here, for comparison of numerical solu-
tions, the same geometric grid as in the Hounslow and CA
schemes has been chosen. The main difference between
the FP and CA schemes is in assigning the new-born par-
ticles to the cells. In the FP scheme, each individual birth
in a cell is directly assigned to the appropriate cells, un-
like in the CA scheme where the average volume of all the
newly born particles is first calculated, and then only the
assignment of the particles is performed.

The discrete form of the PBE with the FP scheme is
then written as (Kumar and Ramkrishna, 1996)

dN;
G =B -l (1)
where
=k 1
B =) (1 - 26jk) ) BuNiNe,  (32)
ok
such that v;_; < Vit v <41 and
N,
DP = DA =N; Y Biali. (33)
k=1

Here, ¥ = vy +v; and B = B(t,v;,v) is the agglomer-
ation kernel. The expression 1 (V) for each particle birth
assignment is given by Eq. 34,

Vig1 =V
S\ ) Vi)
n (V) - I{iv,’,ll

vi—vi-1’

v <V <
+1 (34)
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Figure 2. Comparison of PSDs with different numerical
schemes for a layering batch process.

4.4 Kumar et al.’s new finite volume scheme

Recently, an accurate and efficient discretization method
for agglomeration PBE was proposed in (Kumar et al.,
2016) based on the finite volume approach. This scheme
has an improvement over the finite volume scheme pro-
posed by (Forestier and Mancini, 2012). The scheme pro-
vides better solution of several moments in addition to
the mass conservation property compared to the scheme
in (Forestier and Mancini, 2012). The Kumar et al.’s new
finite volume (NFV) scheme assumes the number density
function as the point masses concentrated on the cell rep-
resentatives. The discrete PBE using Kumar et al.’s (Ku-

Table 1. Parameters used to solve PBE for particle layering pro-
cess.

Parameter Layering
Range of v [mm?] 0-400
Number of cells 80

Grid type linear

G [mm3- s 1] 1

Time step for RK4 [s] 0.1

mar et al., 2016) scheme is then given as

a1

d 2

AV Avk Ne
Z Bj,k"j”kfsi,j,k - Z ﬁile’ljnjAij
(J.k)eQi Vi j=1
(35)

where factor S; ;i accounts for mass conservation and
is defined as

Vi+ Vi
J
Sijk = :
Vi

(36)
The set Q' be a set that contains the pair of cells j and k
such that the sum of the cell’s representatives, v; + vy, falls
in the domain of cell i represented by cell node v;:

0 ={(j,k) GchNc:vF% <vji+w §vi+%}. (37

In the NFV scheme, to ensure that no mass leaves the
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Figure 3. Numerical results for zeroth moment using various
numerical schemes for particle agglomeration.
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Figure 4. Mass conservation with various numerical schemes.

upper boundary of the size domain (for mass conserva-
tion),

B (v = {g i)

where v, is the maximum particle volume.

(Vj + Vk) < Vmax

38
otherwise, (38)

Table 2. Parameters used to solve PBE for binary particle ag-
glomeration process.

Parameter Agglomeration
Range of v [mm?] 0-400

Number of cells 15

Grid type geometric
Bols™'] 1

Time step for RK4 [s] 0.1

No 1

vo [mm?] 1

5 Simulation Results and Discussion

5.1 Simulation Setup

The comparison of different numerical schemes is per-
formed by applying corresponding discretization methods

DOI: 10.3384/ecp20176180
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Figure 5. Numerical results for second moment using the vari-
ous numerical schemes for pure agglomeration.

to batch processes as described in Section 3 and Section
4. Only batch processes with number based PBE with
volume as the particle size, are used in these simulations.
Such simplified processes are used in order to asses the
performance of numerical schemes by comparing their nu-
merical solutions with the analytically tractable solution.

The semi-discrete form (set of ODEs) of the PBEs ob-
tained from particle class size are solved using a 4-th order
Runge-Kutta method with fixed time step. Dynamic simu-
lations are performed using MATLAB (MATLAB, 2017).
Chosen simulation settings used to asses the accuracy of
the numerical schemes for the particle layering process are
given in Table 1 while for the particle agglomeration pro-
cess in Table 2.

5.2 Comparison of numerical solutions for
layering process

In order to compare the numerical schemes for particle
growth due to layering, the number based PBE is utilized
as discussed in Section 3. All the simulation cases for the
granulation process due to layering are carried out using
linear grid for particle size discretization. The entire par-
ticle size range is divided into 80 uniformly distributed
cells (classes) and a constant growth rate is assumed (see
Table 1). The initial PSD distribution is chosen as

4
N(%O):{IOXIO 15 <v <50, 39
0 otherwise.

Three finite volume schemes, i.e., first order upwind
(FU), second order central difference (SCD), and Ko-
ren flux limiter (KFL) schemes are applied to simulate
a pure layering batch process. In addition, simulations
with an analytically tractable solution (Eq. 5) are car-
ried out to reliably evaluate the accuracy of the numerical
schemes. Simulation results (Figure 2) showed that the re-
sulting particle number distribution obtained using the FU
scheme has a diffusive behavior but the solution is stable
and smooth. Since a significantly smeared solution is ob-
served, the accuracy of the FU scheme is considered to be
low. The numerical result obtained with the SCD scheme
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(Figure 2) should have a higher accuracy compared to the
FU scheme owing to its higher order. This, however, is
true only for smooth solutions. The SCD scheme pro-
duces oscillations when the solution changes abruptly, i.e.,
in the presence of discontinuous analytical solutions. For-
tunately, the oscillations that appear in the solution with
the SCD scheme do not appear in the numerical solution
when the KFL scheme was used. Thus, the highest ac-
curacy among the three tested finite volume schemes is
achieved using the finite volume scheme extended with
the Koren flux limiter, Figure 2. Higher accuracy of the
latter scheme is achieved since in the smooth solution re-
gions, the Koren flux limiter function (in general a second
order flux limiter) shows second order accuracy, while in
the region where discontinuities appear, the flux limiter
acts like a first order scheme, and thus produces a smooth
solution. The drawback of the solution obtained with the
KFL scheme is the increased computational time: the FU
and SCD schemes can be solved relatively faster than the
KFL scheme.

5.3 Comparison of numerical solutions for ag-
glomeration process

Comparison of numerical schemes for the pure agglom-
eration process is carried out on a geometric grid with a
factor of 2 in size (v;11 = 2v;) using 15 cells (Table 2).
The four different numerical schemes that are applied to
the process for comparison are: Hounslow (H), fixed pivot
(FP), cell average (CA), and a new Kumar et al.’s (2016)

finite volume (NFV) scheme. The moments are
calculated using discrete form of Eq. 2:
NS
p' =Y x Axin; (40)
i

Assessment of the accuracy of the numerical schemes
is performed by comparing the numerical solutions with
an analytically tractable solution as mentioned in Section
4.

Simulation results showed that three tested numerical
schemes produce solutions where conservation of the ze-
roth moment (total number conservation) and the first mo-
ment (mass conservation) are fulfilled (Figure 3 and Fig-
ure 4). No deviation is observed between the analytical
solution and the numerical solutions for the first two mo-
ments for any of the numerical schemes.

However, the discrepancy between the numerical solu-
tions and the analytical solution shows up for higher mo-
ments (second moment, as shown in Figure 5). The best
accuracy for the second moment is observed for the nu-
merical solution using the CA scheme.

The NFV scheme also predicts the second moment
sufficiently accurate. The poorest solution accuracy for
the second moment is produced when the H and the
FP schemes are used. In addition, these two sectional
schemes produce the same simulation results. This is
due to the specific choice of the grid for particle size dis-
cretization: The FP scheme becomes equivalent to the H
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Figure 6. Simulation results for the total number distribution.

scheme when the geometric grid is used with a factor of 2
(Kumar, 2006). Thus, the FP and H schemes should pro-
duce the same results when such geometric discretization
is used.

Another significant task is to evaluate the performance
of the numerical schemes to predict the particle number
distribution, usually visualized in log scale as shown in
Figure 6. As the particles flow towards the higher size
range in the agglomeration process, it is interesting to
see how the numerical schemes perform at higher parti-
cle size range (thus log scale is used for improved visu-
alization). Here, again, we can see the the discrepancy
between the numerical and the analytical solutions. For
lower particle size range, all the numerical schemes pre-
dicted accurately the particle number distribution. How-
ever, for higher particle size range, deviations from the
analytical solution are observed. Among the tested nu-
merical schemes, the FP and H schemes over-predict the
actual results and thus show the poorest prediction of the
particle number distribution. Similar to the moments pre-
diction, the CA scheme and the NFV scheme show rela-
tively better agreement with the analytical solution even
for a coarse grid (15 cells).

6 Conclusions

Comparison of numerical schemes for solving population
balance equations is presented in this paper, for pure lay-
ering and pure agglomeration problems. Discretization of
the layering term is performed by applying various finite
volume schemes. Among the three tested approximation
schemes, the Koren flux limiter scheme exhibits relatively
better performance in terms of accuracy. However, the Ko-
ren scheme also needs a higher computational time com-
pared to the other tested numerical schemes. Numerical
solutions for the agglomeration process were obtained by
applying different sectional methods, as well as a recent
finite volume scheme. The numerical performance of the
cell average scheme and the new finite volume scheme in
predicting the particle size distribution at higher particle
size range is relatively better than Hounslow’s scheme and
the fixed pivot scheme. The former schemes produce a
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PSD that is in good agreement with the analytical solution
with coarser grid.
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