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Abstract
In this paper, a dynamic model for a granulation process
is developed. A population balance is used to capture dy-
namic particle size distribution in the spherodizer model
and in the rotary drum granulator model. Particle growth
due to layering is assumed in the spherodizer simulation
model, while particle binary agglomeration is taken as the
main granulation mechanism in the rotary drum simula-
tion model. The developed models are 2-dimensional(2D)
models that are discretized in terms of its internal coordi-
nate (particle diameter), external coordinate (axial length
of the granulators). Simulations using the developed mod-
els provide valuable data on dynamic fluctuations in the
outlet particle size distribution for the granulators. In ad-
dition, the simulations results give a valuable information
for the control studies of the granulation process. The
simulation results showed that the extension of the model
from 1D model to 2D model using the discretization of
the external coordinate in the model, introduces a trans-
port delay that is important in control studies.
Keywords: spherodizer, rotary drum, population balance,
dynamic model, time delay

1 Introduction
Granulation processes are used in a wide range of indus-
trial applications, including fertilizer industries. Fertil-
izer manufacturing using the granulation process has re-
ceived considerable research interest during the last few
decades, due to (i) the increasing requirements for effi-
cient production of high quality fertilizers for increased
food production in a growing global population, and (ii)
difficult process control and operation, e.g., among oth-
ers (Herce et al., 2017; Ramachandran et al., 2009; Vali-
ulis and Simutis, 2009; Wang et al., 2006) and (Cameron
et al., 2005) have focused their research on granulation
processes. This paper is focused on the last part of the
mineral fertilizer production, i.e. on the granulation loop.
The granulation loop is used to produce different grades
of fertilizers. A typical schematic of a granulation pro-
cess with the recycle loop is shown in Figure 1. The
granulation loop consists of a granulator, granule classi-
fier (screener), and a crusher. The granulator receives the
fines from the external particle feed, as well as from the

recycled styream. These particle feeds are sprayed with
a fertilizer liquid melt (slurry), and granules are formed.
Different granulation mechanisms depending on the gran-
ulator type and conditions are responsible for these gran-
ule formation.

Process control of granulation loops is challenging.
Typically, the PSD of the granules leaving the granulator
is wider compared to the required PSD of the final prod-
uct. A typical recycle ratio between the off-spec parti-
cles (80 %) and the required product-sized particles (20
%). Thus, it is important to develop a dynamic model that
could further be used in control relevant studies. This pa-
per is focused on developing dynamic models of two types
of granulators, namely spherodizers and rotary drums.
Depending on the granulator type and operating condi-
tions, different granulation mechanisms (granule forma-
tion mechanism) are predominant. In spherodizers, the
main granulation mechanism is particle growth due to lay-
ering. Layering is a continuous process during which par-
ticle growth occurs due to a successive coating of a liq-
uid phase onto a granule. In rotary drum granulators, on
the other hand, particle collision occurs, and thus parti-
cle agglomeration contributes significantly to particle size
change. In this paper, binary particle agglomeration is as-
sumed for population balance (PB) modeling. Binary ag-
glomeration refers to a granule formation mechanism that
occurs due to successful collision of two particles, result-
ing in the formation of a larger, composite particle (Litster
and Ennis, 2004; Vesjolaja et al., 2018).

This paper is an extension of our previous study that is
summarized in (Vesjolaja et al., 2018). Here, the dynamic
model of the granulator is improved by increasing the di-
mensionality of the model, i.e., a 2D model instead of a
1D model is developed. The improved dynamic model
provides valuable data on dynamic fluctuations in the out-
let particle size distribution for the granulators. Thus, the
contributions of this paper are: (i) the 1D model is ex-
tended to the 2D model (ii) developed 2D models are ap-
plied for two types of granulators, spherodizers and rotary
drums, and (iii) two different numerical schemes, a finite
volume scheme and a sectional scheme, are applied to the
developed 2D dynamic models.
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Figure 1. Schematic diagram of granulation loop.
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Figure 2. Graphical representation of the perfectly mixed gran-
ulator.
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Figure 3. Graphical representation of the multi-compartment
granulator. Abreviations: Nz is the number of the compartments
in the granulator; Lg is the length of the granulator.

2 Application of PBE to granulation
process in spherodizers

In the fertilizer production plant under consideration, a
continuous granulation process is used. In an industrial
application, it is relatively easier to work with mass based
population balance equations (PBEs) instead of number
based PBEs due to (i) the PSD in a real plant is typically
measured by sieving and weighting, and (ii) mass based
PBE is more convenient to use from a numerical point
of view due to a huge number of particles compared to
their mass. In addition, the size of the particles is repre-
sented in terms of their diameters (L) since measuring of
PSDs in the plant are based on sieve diameter. A num-
ber based PBE with particle volume as internal coordi-
nate is described in (Ramkrishna, 2000). Thus, it is essen-
tial to convert PBEs from their volume based formulations
to length based formulations. In addition, number based
PBEs should be converted into mass based PBEs. The
mass based PBE for the spherodizer (continuous layering
process) taking particle diameter as the internal coordi-
nate, is formulated as

∂m(L,z, t)
∂ t

=−L3 ∂

∂L

[
G

m(L,z, t)
L3

]
− ∂

∂ z

[
dz
dt

m(L,z, t)
]
.

(1)
where m is the mass density function

[
kg

mm3·[mm

]
. The

first term on the right hand side represents the particle
growth due to layering, while the last term represents a
continuous process and gives the flow of particles through
the granulator. G is the growth rate

[mm
s

]
. Equation 1

is derived by assuming that all particles are ideal spheres
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Figure 4. d50 for influent and effluent.

with a constant solid density ρ .
Here, the particle growth rate for layering (G) is

modeled assuming a linear size-independent growth rate.
Mathematical expressions for a linear size-independent
growth rate are given in Equation 2.

G =
2ṁsl(1−Xsl,i)

ρAp,tot
,

Ap,tot = πn
∫ L=∞

L=0
L2dL,

(2)

where ṁsl is the fresh fertilizer spray rate, Xsl,i is the mois-
ture fraction in the slurry and total Ap,tot is the surface area
of the particles.

2.1 Internal coordinate
Integration of Eq. 1 for i-th size class gives

dMi

dt
= L3

i G ·
[
m
(

t,Li− 1
2

)
−m

(
t,Li+ 1

2

)]
. (3)

For simplicity, in Equation 3, the particle flux term is ne-
glected as it is dependent on the external coordinate (the
discretization of the external coordinate is described in
Section 2.2).

Discretization of the internal coordinate, i.e., discretiza-
tion of the growth term for particle diameter, has been
performed using a finite volume scheme extended by a
flux limiter function. High resolution schemes are consid-
ered to attain higher accuracy than the first order upwind
schemes. In addition, these methods avoid spurious oscil-
lations by applying a high order flux in the smooth regions
and a low order flux near discontinuities (Koren, 1993;
Kumar, 2006). In this paper, a Koren flux limiter function
(KFL) is used to achieve a robust upwind discretization
scheme to Eq. 3. Discretization of the internal coordinate
is performed on a linear grid using the KFL scheme. KFL
scheme for the mass based PBE with the particle diameter
(not volume) as internal coordinate is given in (Vesjolaja
et al., 2018).

2.2 External coordinate
For a continuous granulation process, a plug flow along
the axial direction is assumed. Here, the external coordi-

nate (particle fluxes in and out of the granulator), given by
the term ∂

∂ z

[ dz
dt m(L,z, t)

]
is treated in two different ways

as described below as Case I and Case II, respectively.
Case I: In this simplified case, a concept of output

equivalent inside the granulator is used (Figure 2). This
means that the entire granulator is treated as perfectly
mixed throughout its length (Lg). The whole granulator
is treated as a single compartment with Nz = 1 where Nz
denotes the number of compartments. Thus, the particle
flux term reduces to

∂

∂ z

[
dz
dt

m(L,z, t)
]
= ṁiγi − ṁeγe, (4)

where the particle flux out from the granulator is defined
as

ṁeγe =
mi

τ
γe. (5)

Here, ṁi is the mass flow rate of particles entering the
granulator (influent), ṁe is the mass flow rate of particles
leaving the granulator (effluent), γi is the size distribution
function of the influent, γe is the size distribution function
of the effluent, mi is the mass of the i-th particle size class,
and τ is the retention (residence) time.

Case II: In this case, the granulator is divided into Nz
equally sized compartments, Figure 3. The influent to the
granulator enters the 1-st compartment and the effluent
leaves the granulator from the Nz-th or the last compart-
ment. The particle flux term is discretized by using one of
the finite volume schemes. In this paper, a high resolution
scheme with Koren flux limiter function (KFL) is used to
discretize the spatial domain. For this, the granulator is
divided into Nz uniformly spaced compartments, and each
compartment is assumed to be perfectly mixed. Integration
of the particle flux term for Nz compartments gives

∂

∂ z

(
dz
dt

mi,z

)
= w

∂

∂ z
(mi,z) = w

[
mi,z− 1

2
−mi,z+ 1

2

]
, (6)

where dz
dt = w is the particle velocity along the granulator

and is assumed to be constant inside the granulator. The
approximation of the terms mi,z± 1

2
is then performed using

a KFL scheme (Koren, 1993). The approximation of the
terms mi,z± 1

2
using the KFL scheme is given by Eq. 7 and

Eq. 8.

mi,z− 1
2
≈ 1

∆z

{
Mi,z−1

Li
+

1
2

φ

(
θi− 1

2

)
×
(

Mi,z−1

L3
i

−
Mi,z−2

L3
i

)}
,

(7)

mi,z+ 1
2
≈ 1

∆z

{
Mi,z

Li
+

1
2

φ

(
θi− 1

2

)
×
(

Mi,z

L3
i
−

Mi,z−1

L3
i

)}
,

(8)
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Figure 5. PSD of influent and effluent.

where, Mi is the total mass of the particle in the ith class
and ∆z = Lg

Nz
is the length of the each section in the granu-

lator (Figure 3). The limiter function φ in Eq. 7 and Eq. 8
is defined as

φ (θ) = max
[

0,min
(

2θ ,min
(

1
3
+

2θ

3
,2
))]

, (9)

and parameter θ is defined as

θi− 1
2
=

Mi,z
L3

i
− Mi,z−1

L3
i

+ ε

Mi,z−1
L3

i
− Mi,z−2

L3
i

+ ε

, θi+ 1
2
=

Mi,z+1
L3

i
− Mi,z

L3
i
+ ε

Mi,z

L3
i
− Mi,z−1

L3
i

+ ε

.

(10)

The constant ε is a very small number to avoid division by
zero, e.g. ε = 10−8.

3 Application of PBE to granulation
process in rotary drums

The model for the rotary drum granulator (continuous ag-
glomeration process) includes binary agglomeration of the
particles and is given as

∂m(L,z, t)
∂ t

= B(L,z, t)−D(L,z, t)− ∂

∂ z

[
dz
dt

m(L,z, t)
]
.

(11)
To solve the model, the entire particle size range is divided
into uniformly distributed classes. The particle flux term
(the last term on the right hand side of Eq. 11) is treated
in two different ways as described in detail in Section 2.2.
The agglomeration terms (the first two terms on the right
hand side of Eq. 11) are discretized using the cell aver-
age scheme (Kumar et al., 2006; Kumar, 2006) as well as
Kumar et al.’s new finite volume scheme (Kumar et al.,
2016).

The cell average (CA) scheme was introduced by Ku-
mar (Kumar et al., 2006; Kumar, 2006) and it belongs to
the sectional methods of discretization. In the CA scheme,
at first the total birth of particles in each cell denoted is
computed. Then the average volume of the newly formed

particles in each cell is calculated. The next step in the
CA scheme is to assign the total birth of particles appro-
priately to different cells depending on the position of the
average volume of all newborn particles relative to the
cell center volume. However, the CA scheme discussed
in (Kumar et al., 2006; Kumar, 2006) is valid when the
particle volume represents the internal coordinate. Thus,
the volume based formulation of the CA scheme should
be transformed into the diameter based formulation of the
CA scheme. For this, the zeroth moment (total number of
particles), and the third moment (total mass of particles)
has been chosen to be conserved (compared to zeroth and
first moments for volume based definition). Mathemati-
cal expressions of diameter based formulation for the CA
scheme are given in (Vesjolaja et al., 2018).

Kumar et al.’s new finite volume scheme (Kumar et al.,
2016) is based on the finite volume approach proposed by
(Forestier and Mancini, 2012). Recently, new approach
of solving PBE was proposed in (Kumar et al., 2016).
This scheme is an accurate and efficient discretization
method for agglomeration tern discretization. It has an
improvement over the finite volume scheme proposed by
(Forestier and Mancini, 2012) since it provides better so-
lution of several moments in addition to the mass conser-
vation property. Mathematical formulations are given in
(Kumar et al., 2016).

Table 1. Parameters used for simulating granulation in
spherodizers

Parameter Spherodizer

Range of L [mm] 0-8
Number of cells 80
Grid type linear
ρ [kg· m−3] 1300
Length of granulator [m] 10
τ [min] 10
ṁsl,i [kg· h−1] 100
Xsl,i 0.05
Time step for RK4 [s] 20

In this paper, the agglomeration kernel (β ) is defined
using the Kapur agglomeration kernel model (Kapur,
1972) by taking a= 2 and b= 1. Using the diameter based
formulation, the agglomeration kernel takes the form

βik =

(
6
π

) 2
3 1

ρ
β0Kik, (12)

where the term
( 6

π

) 2
3 1

ρ
arises during the conversion from a

number-based formulation to the mass-based formulation
of PBEs, β0 is the particle size independent part of the ag-
glomeration kernel, and Kik is the particle size dependent
part of the agglomeration kernel as shown in Eq.13.

Kik =
(Li +Lk)

2

LiLk
, (13)
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Figure 6. PSDs at the outlet of the spherodizer for different number of compartments.

4 Simulation Results and Discussion
4.1 Simulation Setup
The semi-discrete form (set of ODEs) of the PBEs ob-
tained from particle class size and spatial discretizations
are solved using a 4-th order Runge-Kutta method with
fixed time step. Dynamic simulations are performed us-
ing MATLAB (MATLAB, 2017). The parameters used to
simulate the application of PBE to the fertilizer granula-
tion process in spherodizers and rotary drums are given in
Table 1 and Table 2 respectively .

Table 2. Parameters used for simulating granulation in rotary
drums.

Parameter Rotary drum

Range of L [mm] 0-8
Number of cells 80
Grid type linear
ρ [kg· m−3] 1300
β0 [s−1] 1.0 ·10−11

Length of granulator [m] 6
τ [min] 6
ṁsl,i [kg· h−1] 100
Xsl,i 0.05
Time step for RK4 [s] 20

4.2 Simulation results for granulation in
spherodizers

The granulation process in spherodizers is simulated for
two simulation cases: Case I where the entire granulator

Table 3. Comparison of the computational time (in seconds)
with different numerical schemes for rotary drum simulations.

Numerical scheme β = β0 β = βik

CA with Nz = 1 3.3 6.0
CA with Nz = 3 9.0 17.0

NFV with Nz = 1 3.6 6.2
NFV with Nz = 3 9.1 17.3

is assumed ’perfectly mixed’, and Case II where the entire
granulator length is divided into uniformly sized compart-
ments as described in Section 2.2.

The mass based formulation of the PBE with diameter
representing the particle size, is used, and the spherodizer
is a continuous process with influent and effluent. Table 1
lists the simulation settings and parameters values. Sim-
ulation results are presented by particle size distribution
(PSD) plots in terms of particle diameter, as well as by
particle median diameter d50. The values of d50 are ob-
tained from the cumulative mass distribution. Linear in-
terpolation is used to extract d50 values that correspond to
intercept for 50 % of cumulative mass.

Simulation results obtained for the application of the
PBEs in spherodizers is depicted in Figure 4, Figure 5
and Figure 6. Figure 4 and Figure 5 shows the change
in particle sizes that occurs during a continuous granu-
lation process in the perfectly mixed spherodizer (solu-
tion of the PBE is found using KFL scheme). Clearly,
the particles grow in size inside the granulator. As a re-
sult, d50 of the effluent is larger than d50 of the influent,
Figure 4, and more of coarse-sized particles is produced,
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Figure 7. d50 at the outlet of the spherodizer for different number of compartments.
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mixed drum granulator.

Figure 5. Simulation results with the inclusion of spa-
tial discretization of the granulator are depicted in Fig-
ure 6 and Figure 7. In Figure 6, PSDs of the effluent at
the outlet of the granulator with different number of com-
partments (Nz) are compared. The PSD plot with Nz = 50
can be considered as a reference plot since no change in
PSD is observed when increasing the number of compart-
ments in the granulator (PSD plot with Nz = 100). Dif-
ferences in PSDs appear mainly for the coarser particle
fractions (with L > 1.5 mm), while for the finer particles
(with L < 1.5 mm), the perfectly mixed granulator gives
accurate enough results. Figure 7 shows d50 of the efflu-
ent as a step change in the influent is given. In a multi-
compartment granulator a time delay is introduced as a
step change of d50 in influent is given. Thus, inclusion of
the spatial discretization could be important for develop-
ment of a control-relevant dynamic model of the graula-
tor. Based on Figure 6 and Figure 7, it can be concluded
that diving the whole granulator space in 3 compartments
could be sufficient to achieve a sufficiently accurate model

compared to the perfectly mixed granulator (Nz = 1). The
only disadvantage of discretizing the granulator in space
is the increased computational time. As the value of Nz
increases, i.e., as the number of compartments in the gran-
ulator increases, the computational time also increases. In
particular, with a standard PC used for the simulation (i5
with 4 cores, 8 GB RAM and 2.1 GHz CPU), the com-
putational time for one-compartment granulator was 0.5 s,
and for the three-compartment granulator was 0.9 s (about
2 times more).

4.3 Simulation results for granulation in ro-
tary drums

The granulation process in drum granulators is simulated
using the CA scheme, as well as the NFV scheme. Similar
to the spherodizers, the simulations have been performed
for a multi-compartment drum granulator model and also
with the perfectly mixed assumption. The mass based for-
mulation of the PBE with particle diameter representing
the size, is used to assess the PSD. The simulation results
are also compared for a size-independent (β = β0) and a
size-dependent (β = βik) agglomeration kernel.

With the perfectly mixed assumption, i.e., for Nz = 1,
the simulation results are depicted in Figure 8. As ex-
pected, the CA scheme and the NFV scheme produce
similar results (d50 of the effluent) for both the size-
independent and the size-dependent agglomeration ker-
nels. Due to binary agglomeration, the particles grow
in size. However, with the size-dependent agglomeration
kernel, the d50 of the effluent is higher than with the size-
independent constant kernel.

Simulation results for the multi-compartment drum
granulator model are shown in Figure 9. Figure 9 com-
pares the PSD of the influent, as well as PSDs of the ef-
fluents that correspond to each of the compartments of the
granulator. Clearly, particles in the first compartment are
smaller in size compared to the second and third compart-
ments of the granulator. Particles increase in their sizes
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as they are transported along the granulator, and as a re-
sult, the coarser fractions of the particles increase while
their finer fractions decrease. The computational time is
also compared for different choices of Nz as listed in Ta-
ble 3. As expected, the computational time needed for
solving the model increases with increasing the number
of compartments in the drum granulator. This observation
is valid with both the CA and the NFV schemes used to
solve the model, and for both types of agglomeration ker-
nels. However, inclusion of the size-dependent agglomer-
ation kernel increase the computational time significantly:
it takes almost twice the time to obtain the solution with
size-dependent agglomeration kernel (β = βik) compared
to the size-independent kernel β = β0.

5 Conclusions

In this paper, the population balance equations for the
spherodizer and the rotary drum granulator were devel-
oped. To account for property inhomogeneity in the
granulators, multi-compartment models of the granulators
were also developed. The simulation results showed that
the discretization of the external coordinate (axial length
of the granulator) in the model, introduces a transport
(time) delay from the inlet of the granulator to its out-
let. Inclusion of the correct transport delay is important
for control studies. However, the ability of the model to
capture transport delay inside the granulator comes with
the cost of increased computational time. Two different
discretization schemes, namely Kumar’s new finite vol-
ume scheme and the cell average scheme showed similar
simulation results in terms of the model solution accuracy
and computational time. Model solution was obtained rel-
atively fast for both simulation scenarios: with the con-
stant agglomeration kernel and with the size-dependent
agglomeration kernel. Thus, the developed models and
model solution techniquies can be used for further control-
relevant studies.
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