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Abstract
OpenHPL is an open-source hydropower library consist-
ing of models for hydropower components that are devel-
oped based on mass and 1D momentum balance. It con-
sists of mechanistic models for the flow of water in filled
pipes (inelastic and elastic walls, incompressible and com-
pressible water), a mechanistic model of a Francis turbine
(including design of turbine parameters), friction mod-
els, etc. This paper includes an extension of OpenHPL
with mechanistic models of different types of surge tanks
(sharp orifice type, throttle valve surge tank, air-cushion
surge tank) and draft tubes (conical diffusers and Moody
spreading pipes). The simulated response of the models is
presented using a case study of real hydro power plants.
Keywords: surge tanks, draft tubes, air-cushion surge
tank, throttle valve surge tank, conical diffuser, Moody
spreading pipes

1 Introduction
1.1 Background
The electricity generation from renewables has increased
because of the rise in coal prices, oil insecurity, climatic
concern (Brown, 2012), and the nuclear power debate
(Wikipedia, 2019). There is a demand for renewable-
sources economy over the coal-fired economy (Brown,
2012). The renewable energy sources are a combination
of intermittent and dispatchable energy sources. Intermit-
tent sources like solar, wind, and tidal power plants exhibit
fluctuating power production that creates an imbalance be-
tween generation and load. In this regard, renewable dis-
patchable sources like hydro power plants play a signifi-
cant role in balancing out the variability caused by inter-
mittent sources. Current hydropower modeling, design,
and analysis tools are limited and available commercially.
Freely available tools include CASiMiR-Hydropower1,
LVTrans2, and OpenHPL3, while commercial tools in-
clude Alab4 and Modelon Hydro Power Library (HPL)5.
In this regards, it drives motivation for open-source hy-
dro power library development for modeling, design, and

1http://www.casimir-software.de/save_download.php?language=2
2http://svingentech.no/about%20lvtrans.html
3https://github.com/simulatino/OpenHPL
4http://www.alab.no/Alab-Hydropower-Software/Functionality-

Alab-Hydropower-Software/Operation-simulation-with-waterway
5https://www.modelon.com/library/hydro-power-library/

analysis.

1.2 Previous studies
A mechanistic model of hydropower systems has been de-
veloped in (Splavska et al., 2017) using mass and 1D lin-
ear momentum balance which leads to a Modelica6 based
open-source hydropower library OpenHPL, and was initi-
ated in a PhD study (Vytvytskyi, 2019). OpenHPL is un-
der development at the University of South-Eastern Nor-
way. Currently, OpenHPL has units for flow of water in
filled pipes (inelastic and elastic walls, incompressible and
compressible water) (Vytvytsky and Lie, 2017), a mech-
anistic model of a Francis turbine (including design of
turbine parameters), friction models, etc (Vytvytskyi and
Lie, 2018). The library also has draft models for a Pel-
ton turbine, Francis turbine friction model, surge shaft,
open channel flow, and a hydrology model. In addition,
some accompanying work on analysis tools has been de-
veloped in scripting languages (Python, Julia) related to
state estimation, structural analysis, etc (Vytvytskyi and
Lie, 2019b). The library has been tested on real power
plant data (Vytvytskyi and Lie, 2019a). The library is
designed to interface to other Modelica libraries, e.g., li-
braries with generator models, electric grid, etc., for ex-
ample, OpenHPL can be integrated with PVSystems7 for
photovoltaics as in (Pandey and Lie, 2020).

In this regard it is of interest to further develop units for
OpenHPL. This paper primarily focuses on mechanistic
models of surge tanks and draft tubes. The simple surge
tank mechanistic model developed in (Splavska et al.,
2017) is further enhanced by a sharp orifice type surge
tank and a throttle valve surge tank considering hydraulic
resistance in the inlet to the surge tank. The surge tank
model is also further enhanced using air-cushion surge
tank as a closed surge tank mechanistic model. A further
extension to the library includes mechanistic models of
draft tubes: conical diffuser and moody spreading pipes.

1.3 Outline of the paper
The paper is organized as follows. Model developments
for surge tanks and draft tubes are provided in Section
2. The simulated response for the developed mechanis-
tic model for surge tanks and draft tubes are presented in
Section 3. Conclusions and future work are sketched in

6https://www.modelica.org/
7https://github.com/raulrpearson/PVSystems
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Figure 1. Simple surge tank with geometrical dimensions of
height H, length L, and diameter D. The height of liquid level
inside the surge tank is h with slanted length to be `. The volu-
metric flow rate inside the surge tank is V̇ with Ff as fluid fric-
tion. Fg is the gravitational force due to fluid mass m inside the
surge tank. pb is the bottom pressure and pt is the top pressure
equivalent to atmospheric pressure pa for a free-fluid surface.
For a hydropower system, we considered fluid inside the surge
tank to be water with color as blue.

Section 4.

2 Model Developement
Two main assumptions were made while developing mod-
els for hydro power units. First, we consider incompress-
ible water flow inside the units. Second, we consider the
inelastic pipe for modeling all types of surge tanks and
draft tubes.

2.1 Surge tanks
A surge tank is usually placed between an intake and a
penstock pipe in a hydro power system. The prime benefit
of a surge tank is to provide a low-pressure region to dissi-
pates pressure energy released during the sudden opening
and closing of the turbine valve. Depending on the loca-
tion and head, the surge tank can be of open type (water
surface at atmospheric pressure) or closed type (water sur-
face in contact with pressurized gas/air).

2.1.1 Simple surge tank

A simple surge tank is shown in Fig. 1.
The mass and momentum balance for a dynamical sys-

tem can be expressed as in (Lie, 2017a, p. 87-88, 226-227)
,

dm
dt

= ṁi− ṁe

dM

dt
= Ṁi−Ṁe +F,

where subscript i and e refers to influent and effluent prop-
erties, respectively. m, M and F represents mass, linear
momentum and force acted-upon in a dynamical system.
If ṁ and Ṁ are mass flow rate and momentum flow rate
for a system with single entry and single exit, it is com-
monly written as ṁi− ṁe = ṁ and Ṁi−Ṁe = Ṁ .

Figure 2. A hydropower unit, for example a simple rigid pipe,
with ideal fluid (water) flow from a inlet pressure point pi to
outlet pressure po with ṁ as a flow variable. The pressure point
inside the pipe is considered to be a across variable.

For surge tanks, if ṁ and Ṁ represents water mass flow
rate and momentum flow rate of water inside the surge
tank, respectively, then,

dm
dt

= ṁ (1)

dM

dt
= Ṁ +F. (2)

The modeling of hydropower units in OpenHPL is con-
sidered using ṁ as a flow variable and pressure p at any
point in a unit as a across variable8.

Figure 2 shows a connector for a hydropower unit cre-
ated for OpenHPL. While developing a unit, for exam-
ple a surge tank in our case, mathematical terms in mass
and momentum balances as expressed in Eq. 1 and Eq. 2
should be reduced using algebraic variables to ṁ, pb, and
pt. For the surge tank we have pi = pb and po = pt for
a volumetric flow V̇ sign convention to be positive in the
upward direction as in Fig. 1.

The mass balance equation represented in Eq. 1 can be
represented by series of algebraic equations. The mass of
water inside the surge tank leads to,

m = ρA` (3)

`=
h

cosθ
(4)

A =
πD2

4
, (5)

and the mass flow rate leads to,

ṁ = ρV̇ , (6)

where A and θ represents cross-sectional area and slant
angle of a cylindrical surge tank with diameter D. ρ repre-
sents density of the fluid. h and V̇ are differential variable
with initial height of water level inside the surge tank as ho
and initial discharge to the surge tank as V̇o . Similarly, the
momentum balance equation in Eq. 2 can be represented
by a series of algebraic equations as,

M = mv (7)

v =
V̇
A

(8)

Ṁ = ṁv (9)
F = Fp−Ff−Fg, (10)

8The across and flow variables are used for creating a con-
nectors in Modelica language. For more details, please see
https://mbe.modelica.university/components/connectors/ .
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where v is the velocity of water inside the surge tank in
the direction of V̇ and F is the total force acting inside the
surge tank in the direction of v. Fp is the force exerted due
to pressure difference pb− pt. Ff is the fluid friction acting
opposite in the direction of v, and Fg is directed downward
due to gravity.

The pressure force exerted in the normal direction of A
is given by,

Fp = (pb− pt)A. (11)

Furthermore, the fluid friction Ff is calculated as,

Ff =
K
′′′

Aw fD

4
(12)

Aw = πD` (13)

K
′′′
=

ρV̇ | V̇ |
2A2 , (14)

where K
′′′

is the kinetic energy of the fluid per volume
which is proportional to the quadratic variation of V̇ and
v. The expression for K

′′′
is ρv|v|

2 . The absolute value for v
and V̇ allow for reversing direction of water flow. Aw rep-
resent the wetted area due to water flow inside the surge
tank given by an expression Aw = πD`. In Eq. 12, fD
represents Darcy’s friction factor given by an implicit ex-
pression in the Colebrook–White equation (Colebrook and
White, 1937; Colebrook et al., 1939) for transient full-
fluid flow in the conduit. There exists several explicit
approximation for fD that requires less computation as
listed in (Lie, 2017a, p. 239). For OpenHPL, we are using
the explicit approximation of Colebrook–White equation
from (Swanee and Jain, 1976),

1√
fD

=−2log10

(
ε/D
3.7

+
5.7
N0.9

Re

)
, (15)

for NRe =
(
2300−108

)
and ε/D =

(
10−5−0.005

)
,

where ε is a conduit roughness height and NRe is the
Reynolds number expressed by NRe =

ρ|v|D
µ

. Here, µ rep-
resents kinematic viscosity of the fluid.

For laminar flow, fD = 64
NRe

with NRe < 2100. The re-
gion for the fluid with 2100 ≤ NRe < 2300 is a transition
flow interpolated with a 4th order polynomial equation.

The expression for force due to gravity is given as,

Fg = mgcosθ . (16)

Equation 1 to 16 represents Differential Algebraic
Equations (DAEs) for the mechanistic modeling of simple
surge tank represented in Fig. 1 and can be solved using
equation based modeling language like Modelica.

2.1.2 Sharp orifice type surge tank
The model of the simple surge tank can be further modi-
fied using a sharp orifice hydraulic obstruction inside the
surge tank as represented in Fig. 3.

To model the sharp orifice type surge tank we employ
the generalized friction factor for sharp orifice fitting as

Figure 3. Sharp orifice type surge tank with a sharp orifice of
diameter Dias shown by horizontal perturbation bars inside the
surge tank. The sharp orifice acts as a hydraulic obstruction for
water flowing inside the surge tank.

given in (Lie, 2017a, p. 246). The expression for fluid fric-
tion force represented by Eq. 12 needs a correction term
due to the sharp orifice. The frictional force exerted due
to sharp orifice can be calculated using an expression for a
pressure drop expression as given in (Lie, 2017a, p. 244).
The overall frictional force for the sharp orifice type surge
tank is now calculated by the expression as,

Ff =
K
′′′

Aw fD

4
+

1
2

ρv | v | Aφso, (17)

where A is the cross-sectional area of the sharp orifice type
surge tank with diameter Do which is equivalent to the
simple surge tank with diameter noted with symbol D, and
φso is a generalized friction factor. φso depends on NRe,
and the diameter of the surge tank and the orifice.
For NRe < 2500 :

φso =

[
2.72+

(
Di

Do

)2(120
NRe
−1
)]
·φ 0

so

For NRe ≥ 2500 :

φso =

[
2.72+

(
Di

Do

)2

· 4000
NRe

]
·φ 0

so

where,

φ
0
so =

[
1−
(

Di

Do

)2
][(

Di

Do

)4

−1

]
.

Equation 1 to 11, Eq.17, and Eq.13 to 16 represent
DAEs for the mechanistic model of the sharp orifice type
surge tank.

2.1.3 Throttle valve surge tank

To model a throttle valve surge tank we employ a similar
method for correction of fluid frictional force as in the case
of a sharp orifice type surge tank. A schematic diagram for
throttle valve surge tank is given in Fig. 4.
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Figure 4. Throttle valve surge tank with the diameter and the
length of throat as Di and Lt, respectively. The throat in the
figure acts as a hydraulic obstruction for the water flow inside
the surge tank.

The water mass, velocity, momentum, and the fluid fric-
tion force for a throttle valve surge tank varies depending
upon the water level inside the surge tank as above or be-
low the throat.
1. For ` ≤ Lt: When the water level is at the throat or
below the throat, we have,

m = ρAt` (18)

Ff =
K
′′′

Aw,t fD

4
, (19)

where At is the area of throat, Aw,t is wetted area for the
throat given by expression Aw,t = πDt`. The average ve-
locity for this case is calculated using v = V̇

At
and K

′′′
is

given by expression K
′′′
= 1

2 ρv | v |
2. For ` > Lt: When water level inside the surge tank is
above the throat of the surge tank, the frictional factor due
to the throat should be considered.
The mass of the water inside the surge tank in this case is
given as,

m = ρ(AtLt +A(`−Lt)), (20)

where A = πD2
o

4 . Similarly, the average velocity, water mo-
mentum, and pressure force are given as,

v =
V̇
2

(
1
At

+
1
A

)
M = ρV̇ `

Fp = (pb− (pt +ρg(`−Lt)))At +ρg(`−Lt)A.

Observe that while considering the frictional force cor-
rection factor for ` > Lt the velocity direction is important.
a). For v ≥ 0 : The friction factor is calculated consider-
ing a square expansion type pipe fitting and the general-
ized friction factor is given as (Lie, 2017a, p. 245)
For NRe < 4000 :

φse = 2

[
1−
(

Do

Di

)4
]

For NRe ≥ 4000 :

φse = (1+0.8 fD)

[
1−
(

Do

Di

)2
]
.2

This gives the total frictional force for this case,

Ff =
K
′′′

Aw fD

4
+

1
2

ρve | ve | Atφse, (21)

where φse represents the generalized friction factor for the
square expansion type fitting. The entrance velocity for
square expansion type fitting is expressed as ve =

V̇
At

and
the entrance area is At. The wetted area is calculated us-
ing Aw = πD(`−Lt).
b). For v < 0: The flow of water in this case is considered
to be from the top of the surge tank to the bottom direc-
tion. The friction factor is calculated considering square
reduction type pipe fitting and the generalized friction fac-
tor is given as,
for NRe < 2500 :

φsr =

(
1.2+

160
NRe

)[(
Di

Do

)4

−1

]
and for NRe ≥ 2500 :

φsr = (0.6+0.48 fD)

(
Di

Do

)2
[(

Di

Do

)2

−1

]
.

This gives the total frictional force for this case to be,

Ff =
K
′′′

Aw fD

4
+

1
2

ρve | ve | Aφsr, (22)

where φsr represents the generalized friction factor for the
square reduction type fitting. The entrance velocity is ex-
pressed as ve =

V̇
A and the entrance area is A.

2.1.4 Air-cushion surge tank
The general schematic of air-cushion surge tank is shown
in Fig. 5. The free water surface inside the surge tank is
filled with pressurized air making it as a closed type surge
tank.

The pressure wave during a load rejection traveled from
high pressure region (at the end of penstock) to the low
pressure region (near free water surface, i.e., through the
surge tank in hydro power systems). During this period,
water mass inside the surge tank oscillates, dissipating
pressure. The more the amplitude of water mass oscilla-
tion the higher should be the physical height of the surge
tank. For reducing the amplitude of water oscillation in-
side the surge tank, pressurized air is placed inside the
surge tank making a closed surge tank. This will cause the
air to compress and expand adiabatically (Vereide et al.,
2016; Zhang et al., 2009), and the energy due to high pres-
sure is realeased as a form of work done for compression
and rarefaction. For a adiabatic process we have,

pV γ = constant, (23)
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Air

Water

Figure 5. Air-cushion surge tank with initial air pressure of pt
which is normally tens of atmospheric pressure.

where p, V , and γ is the pressure, volume, and ratio of
specific heats at constant pressure and at constant volume,
respetively, for air. The mechanistic model of air cushion
surge tank is similar to that of simple surge tank, however
with correction term for m and pt for a simple surge tank.

The mass of water and air inside surge tank is given as,

m = ρA`+ma, (24)

and the air pressure inside the surge tank is given by,

pt = pc

(
L− `o

L− `

)γ

, (25)

where ma is the mass of air inside the surge tank given by
expression,

ma =
pcA(L− `o)Ma

RT o . (26)

In Eq. 25, pc is the initial air cushion pressure when initial
slant height of liquid level inside the surge tank is `o. The
expression shown in Eq. 25 is derive from Eq. 23 equal-
izing the initial and final expression. In Eq. 26, Ma rep-
resents molar mass of air, R is the universal gas constant,
and T o is the temperature of air inside the surge tank.

2.2 Draft tube
A draft tube is a hydraulic device used in reaction turbines
in a hydro power systems for utilizing the available ki-
netic energy at the exit of the runner of the turbine. One of
the prime benefits of a draft tube is to increase the turbine
pressure head by decreasing the exit velocity out of the
runner which will improves the overall efficiency of hy-
dropower systems. And the other benefit is that the back
flow of water from a tailrace to the turbine is restricted
due to higher pressure region at the turbine’s outlet due to
draft tube (Gubin, 1973). There are various types of draft
tubes; the most common type is a conical diffuser and oth-
ers are variants of the conical diffuser (Arasu, 2008). In
this paper, we will derive a mechanistic model for a coni-
cal diffuser and a hydraucone or a Moody spreading pipes
(White, 1921).

Figure 6. Conical diffuser inclined at angle θ with input diam-
eter Di and output diameter Do. pi and po are input and output
pressure of the conical diffuser with pi > po.

2.2.1 Conical diffuser
A general schematic of the conical diffuser is shown in
Fig. 6.

The influent and effluent mass flow of water through the
conical diffuser is same. This gives dm

dt = 0 from Eq. 1.
Thus, the mechanistic model is derived from the momen-
tum balance given by Eq. 2 with series of DAEs. First, we
consider the model of the conical diffuser considering it
be a cylinder of average diameter D = Di+Do

2 . Second, we
will add a frictional force correction factor for the conical
diffuser expanded from Di to Do (with a diffusion angle
normally in the range of (5◦−20◦)).

dM

dt
= Ṁ +F (27)

M = mv (28)

v =
V̇
A

(29)

Ṁ = ṁv (30)
F = Fp−Fg−Ff, (31)

where Fp = piAi− poAo, Ai =
πD2

i
4 , Ao = πD2

o
4 , A = πD2

4 ,
and Fg = mgcosθ . The mass of water inside the diffuser
is given by,

m = ρV,

where V is the volume of water. The expression for V can
be calculated as9,

V =
πH
12
(
D2

i +D2
o +DiDo

)
.

The overall frictional force is calculated using expres-
sion

Ff =
K
′′′

Aw fD

4
+

1
2

ρv | v | Aiφd, (32)

9https://mathworld.wolfram.com/ConicalFrustum.html
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Figure 7. Moody spreading pipes with length of main part Lm
with both the branch length of Lb. v and vb are velocity through
the main part and the branch part, respectively. The continu-
ity equation for the pipe branching is Aiv = Aovb +Aovb. The
pipe contracts from the point of branching to the outlet of the
branch in the real case of hydraucone as explain in (White, 1921,
p. 276). However, we are considering a constant cross-section
throughout the branch pipe. θ is a branching angle or a bifurca-
tion angle.

where φd is the generalized friction factor due to the dif-
fusion.

The head loss for a conical diffuser, diffused from Di to
Do, is minimum at a diffusion angle of 8◦ for a fixed value
of Do

Di
. For a pair value of diffusion angle and the ratio Do

Di
,

φd can be calculated from (Munson et al., 2009, p. 420).
For our case, for a maximum efficiency conical diffuser,
we will conside a diffusion angle of 8◦ which gives

φd ≈ 0.23
(

1− Di

Do

)2

. (33)

The mechanistic model of a conical diffuser can be repre-
sented by using DAEs from Eq. 27 to 33.

2.2.2 Moody spreading pipes

The schematic diagram of a moody spreading pipes or a
hydraucone is shown in Fig. 7.

For Moody spreading pipes, dm
dt = 0, and the mechanis-

tic model is developed from the momemtum balance. We
take the momentum balance considering verticle direction
i.e., y−axis momentum conservation. The series of DAEs
are,

dM

dt
= Ṁ +F (34)

M = mmvm +2mbvb cos
θ

2
(35)

Ṁ = ṁmvm +2ṁb cos
θ

2
(36)

F = Fp−Ff−Fg, (37)

where mm and mb are mass of water in the main part
and the branching part, respectively given by expressions
mm = ρAiLm and mb = ρAoLb. Similarly, vm and vb are the
velocity in the main and the branching part, respectively.
vm = V̇

Ai
and vb are calculated using continuity equation

Table 1. φ o
d for different value of θ for Moody spreading pipes

friction factor correction

θ 15 30 45 60 90
φ o

d 0.04 0.16 0.36 0.64 1

for branching pipes using expression as,

Aivm = Aovb +Aovb

Aivm = 2Aovb

vb =
Ai

2Ao
vm.

Furthermore, expressions for ṁm and ṁb are given as,

ṁm = ρV̇

ṁb = ρV̇b

V̇b = Aovb,

where V̇b is the volumetric flow rate in the brach.
The components in Eq. 37 are expressed as,

Fp = piAi−2poAo cos
θ

2
(38)

Fg = mmg+2mbgcos
θ

2
. (39)

The fluid frictional force Ff is calculated considering fluid
friction in the main and the brach pipe with addition of a
generalized frictional force correction factor for branch-
ing. The overall frictional force is then,

Ff = Ff,m +2Ff,b cos
θ

2
+2 · 1

2
ρvm | vm | Aiφd, (40)

where φd is the generalized friction factor for a single
branch in case of branching and taken from (Idelcik, 1966,
p. 281, 301), given as,

φd = 1+
(

vb

vm

)2

−2
vb

vm
cosθ −φ

o
d

(
vb

vm

)2

, (41)

where φ o
d depends on θ and calculated from Table 1.

Ff,m and Ff,b are fluid frictional force, calculated using
Eq. 12, for main and the branch pipe for Moody spreading
pipes.

Equation 34 to 41 represent DAEs for mechanistic mod-
eling of Moody spreading pipes or Hydraucone.

3 Simulated Responses and Results
For the simulated responses from the mechanistic models
of surge tank and draft tubes we take a case study from
a real hydropower plant. For simulating open surge tanks
and draft tubes we are using the layout of the Trollheim
hydro power plant and for simulating air-cushion surge
tank we are using the layout of the Torpa hydropower
plant.

The layout diagram of Trollheim and Torpa hydro
power plants are shown in Fig. 8.
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Turbine

Tail water

Air-cushion surge tank

a) Trollheim HPP

b) Torpa HPP

Air
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Figure 8. Layout diagram for the Trollheim (Vytvytskyi and
Lie, 2019a) and the Torpa Hydro Power Plant (HPP) (Vereide
et al., 2016). Nominal head, nominal discharge, and nominal
power output are 370m, 40m3/s and 130MW for the Trollheim
HPP, and 445m, 35m3/s and 150MWfor Torpa HPP. Torpa
HPP has two turbine units each having nominal power output
of 75MW. The air-cushion surge tank for the Torpa HPP has air
volume of 13,000m3 initially pressurized at 4.1Mpa. For the
Trollheim HPP, the diameter for both of the penstock and the
surge tank is 4m while for both of the headrace and the tailrace
tunnel is 6m. Similarly, for the Torpa HPP, the diameter of both
of the headrace and the tailrace tunnel is 7m.

3.1 Responses for surge tanks

Figure 9 shows the simulated response for different surge
tanks for the Trollheim HPP and the Torpa HPP.

In case of the Trollheim HPP, the manifold pressure
surge during load acceptance10 in case of a simple surge
tank has higher amplitude than that for sharp orifice and
throttle valve surge tank. Furthermore, the pressure surge
dies out soon in case of both sharp orifice and throttle
valve surge tank. Also, the diameter of sharp orifice and
throttle valve affects the manifold pressure surge oscilla-
tion. For example, when Dt = 1m for a throttle valve surge
tank the manifold pressure pb settles after 20s while for
sharp orifice type with Dso = 1m, pt settles around 300s.

In case of the Torpa HPP, the dynamics of both mani-
fold pressure and air-cushion pressure is the same with a
difference of almost 2bars.

3.2 Responses for draft tubes

Figure 9 shows the simulated response for a conical dif-
fuser and Moody spreading pipes for the the Trollheim
HPP.

For a Moody spreading pipes draft tube, the inlet pres-
sure pi decreases as the branching angle decreases.

10It is the condition when the load at prime mover is added suddenly.
For instance, in case of turbine running an electrical generator the sud-
den industrial operation like electrical motors, etc., can be considered as
a load acceptance.

Figure 9. Simulated response for different surge tanks with step
change of 0.45 to turbine’s valve signal. The turbine’s valve
signal starts at t = −500s to show that simulation is performed
in steady-state for−500s and at t = 0s the valve signal is change
from 0.5 to 0.95 to see the dynamics of other variables.

4 Conclusions and Future Work
This paper consists of mechanistic models for different
types of surge tanks and draft tubes. Result shows that the
pressure surge during load acceptance dies out soon for
the throttle valve surge tank when the diameter of throat is
decreased succesively. Similar operations can be obtained
for a sharp orifice type surge tank, however, pressure surge
amplitude decays soon in case of a throttle valve surge
tank. For an air-cushion surge tank, the dynamics of both
manifold pressure and air-cushion pressure are the same.
For a Moody spreading pipes, the inlet pressure decreases
when the braching angle is decreased.

Future work includes testing of the surge tank and draft
tube mechanistic models with experimental data. The dy-
namics of sharp orifice type surge tank and throttle valve
surge tank can be validated with simulated results from
(Bhattarai et al., 2019). The air-cushion surge tank model
can be validated with experimental results obtained from
(Vereide et al., 2016). Similarly, model validation for the
conical diffusers can be done with experimental data from
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Figure 10. Simulated response for conical diffuser and Moody
spreading pipes for different branching angle. Di = 4m for both
types of draft tubes. Do = 4.978m for conical diffuser with dif-
fusion angle of 8◦ and Do = 3.5m for Moody spreading pipes.
Lm = 4m and Lb = 3m for Moody spreading pipes. Moody
sprading pipes draft tube is simulated for different branching an-
gle of 15◦, 30◦, and 45◦.

(Vytvytskyi and Lie, 2019a). For Moody spreading pipes,
prior model judgement is required from experts.
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