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Abstract
Biomass fired boilers usage is increasing due to

supportive policies and economic trends. Fluidized bed

technology is identified as proper solution for lower

quality fuels such as biomass. Moisture and heating

value can vary significantly in biomass fuels. Without

real-time information on their variation, they are a

disturbance to the system. These disturbances affect the

system steady state and decrease operational efficiency.

Proper characterization of the disturbance enables the

use of Feed-Forward control. Feed-Forward makes use

of the knowledge about the updated condition of the fuel

and can act towards reducing the impact of the fuel on

offsetting the system. Feed-Forward Model Predictive

Control is proposed as new control strategy.

Comparison is made between the existing control

strategy and the new proposed solution. Control

performance is evaluated on three process outputs, in

three different scenarios. Adding feed-forward signal

for fuel moisture improves control performance in both

controllers, while ultimately Feed-Forward Model

Predictive Control shows the best performance in most

comparison metrics.

Keywords: biomass fuel, fuel moisture, model

predictive control, feed-forward, plant control

1 Introduction

Biomass usage as a fuel is constantly growing due to

supportive government policies and positive market

trends. The highest share of biomass utilization as fuel

goes in combustion in large scale steam boilers, used in

Combined Heat and Power (CHP) plants (Atsonios et

al., 2020).

Fluidization technology has been implemented

towards creating more favorable combustion conditions

in the furnace (Leckner, 2003). Bubbling Fluidized Bed

(BFB) and Circulating Fluidized Bed (CFB) boilers

operate on this technology. CFB are the newer,

improved version of the two, and therefore are more

applied and more work is done on their analysis.

However, for applications with lower power output,

BFB boilers are still applicable and competitive (Peña,

2011). The differences between BFB and CFB boilers

are in the power output, geometry of furnace, layout

(configuration of heat exchangers), values of 

operational parameters, and there are differences in flow 

streams (mostly noted in the recirculation part) (Peña, 

2011). Except for the main operational differences, there 

are noted differences in the research work done, such as 

analyzing the capability of power output change over 

time, temperature profiles in the furnace, and thermal 

capacity of the systems (Huttunen et al., 2017; Arena et 

al.,1995).   

Process modeling is a cost-effective way to analyze 

system performance, compared to real tests at operating 

large scale facilities. The key requirement before 

process modeling is to specify the aim of the modeling 

work, since there are plenty of different types of models, 

and just the right combination of model and application 

can help towards effective process analysis (Atsonios et 

al., 2020). Simplified mass and energy balances models, 

with 0 dimensionality (e.g. divided in several control 

volumes of interest), are a simple and effective way for 

boiler system analysis (Sandberg et al., 2011). Although 

they provide less details compared to CFD and other 

high dimensional models that include more process 

features, their simulation time is shorter than CFD 

models and they can capture the process behaviors and 

be utilized e.g. for control or optimization purpose. 

Models that can be simulated much faster than real-time 

can be implemented on-line, as a prediction support for 

the controller (Szentannai, 2011; Zimmerman et al., 

2018). 

Most of the applied controllers in thermal power plant 

are based on Proportional Integral (PI) algorithm 

(Szentannai, 2011). This type of control is proven in 

operation and reliable. However, with the new demands 

for the power plants flexibility due to the rise of use of 

intermittent renewable energy sources, the current 

control structure efficiency is limited. PI controllers are 

known for their limitations for multi-input multi-output 

(MIMO) processes with strong coupling between 

variables, such as steam boilers (Szentannai, 2011). 

On the other hand, Model Predictive Control (MPC) 

is perceived as a good option for replacement of the 

current controllers, improving control performance in 

strongly coupled systems (Qin and Badgewell, 2013). 

They are proven in applications in the chemistry 

industry, while their application in power plants is 

lagging behind (Szentannai, 2015). One of the main 
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identified difficulties towards implementation of MPC 

is the deficit of quality dynamic models, on which the 

controller is based (Atsonios et al., 2020). In MPC, the 

controller relies on the accuracy of the underlying 

model. In particular, the performance can degrade in 

presence of unmodeled disturbances. Fuel quality 

(heating value and moisture) is the strongest disturbance 

in biomass combustion systems. 

The necessity for increase of research work on 

dynamic modeling of biomass energy applications has 

been emphasized in a recent review (Atsonios et al., 

2020). The amount of work published on this topic is 

scarce compared both to dynamic studies on fossil fuel 

systems and steady operation studies on biomass. In 

addition to this, many research groups develop separate 

models on sub-systems of the boiler, which does not 

allow for full system analysis and communication 

between different types of models used. 

Combustion analysis on BFB boilers with biomass 

and waste fuels have been analyzed in (Ravelli et al., 

2008; Galgano et al., 2005; Scala and Chirone, 2004). 

These models provide detailed analysis of the 

combustion process. However, they are too 

computationally demanding for implementation in 

control purposes.  

Control work focusing on the water/steam side 

dynamics has been studied in (Åström and Bell, 2000). In 

this work, the combustion part of the boiler is simplified. 

As mentioned above, modeling the disturbance to the 

process can enhance the control. The major uncertainty 

in the boiler is related to the heat input, which comes 

from fuel moisture variations. By having a model that 

includes information about the moisture variation in the 

incoming fuel, we have additional important parameter 

knowledge, which can help toward a better analysis of 

the system. The benefits of adding feed-forward signal 

to MPC controller are analyzed in (Carrasco and 

Goodwin, 2011). Combining the knowledge of the fuel 

moisture with advanced control method can help 

towards decreasing the effect of fuel variation on the 

process outputs.  

The aim of this work is therefore to show how MPC 

can be applied in biomass-fueled BFB boilers, how it 

compares to conventional PI control, and quantify the 

benefit introduced by feed-forward (FF). In the 

following sections, the analyzed process and its 

characteristics are described, an overview of the 

numerical model and the control structures are given, 

after which results are presented and discussed. 

2 Process description   

The analyzed system is a Bubbling Fluidized Bed (BFB) 

Boiler fired by mix of woody fuels (bark, chips). It is 

used in Eskilstuna Strängnäs Energi och Miljö AB 

(ESEM), CHP plant, to provide electricity and district 

heating for the local municipality.  

Its nominal operation parameters are listed in Table 

1. Throughout the year the plant operates with change of 

the load (boiler power output) based on demand and 

plant condition. The boiler layout is presented in Figure 

1. The boiler consists of a fluidized bed region, 

freeboard, a superheaters section (SH 1,2,3) and an 

cconomizer.  

Table 1. Boiler nominal parameters 

Parameters Value 

Boiler power output 110 MW 

Final Steam Temperature 540 oC 

Fuel Flow 13.7 kg/s 

Steam flow 41.1 kg/s 

Fuel LHV, wet basis  8500 kJ/kg 

Fuel moisture 48% 

 

The fuel is delivered into the fluidized bed region. In 

BFB boilers, a staged combustion is applied, where air 

is delivered at three different heights – primary, 

secondary and tertiary air. In addition, there is 

recirculation of flue gasses, which is used for 

temperature regulation in the fluidized bed region. 

Combustion process is completed along the freeboard, 

and after that, the hot flue gasses transfer the heat to the 

water/steam side, at the steam superheaters and the 

economizer. 

 

 

Figure 1. Boiler Layout 

Water is pumped from the water tank, goes for 

preheating in the economizer, evaporates to steam in the 

evaporator pipes placed around the furnace and finally 

is superheated in 3 superheaters before entering the 

steam turbine. There are 2 steam attemperators (water 

sprays injected in the steam), to control steam 

temperature. 

3 Methodology 

3.1 Model description 

Developing models for big industrial plants, such as 

steam boilers is a time demanding task. Given that 
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boilers are extensively used for various applications and 

the effort to develop models of these plants, it is 

important to make sure of the model’s reusability    

(Casella et al., 2014). Models developed with acausal 

approach allow for reusability with less effort compared 

to making a new one from scratch (Casella et al., 2014). 

The programming language Modelica and the 

software Dymola are used in this work for that aim. 

With minor adjustments, the model can be used to 

simulate different system types and configurations. In 

addition, the model can be exported to various other 

software, to develop control or other frameworks. In this 

work, the Dymola model is exported to Simulink, where 

system identification (SI) and controller design are 

performed.  

3.2 Boiler equations 

Based on the Boiler layout, the system is divided in 

control volumes to describe the process characteristics 

in a simplified way and to capture all essential aspects 

of the process. 

 

 

Figure 2. Boiler flows logics 

 

The logic of the flows analyzed within the model is 

shown in Figure 2. Orange lines represent the path of the 

hot side (flue gas) and the blue lines represent the cold 

side (water/steam). 

 

∆𝑇 =
(𝑇ℎ1 − 𝑇𝑐2) − (𝑇ℎ2 − 𝑇𝑐1)

ln (
𝑇ℎ1 − 𝑇𝑐2
𝑇ℎ2 − 𝑇𝑐1

)
 [ 𝐾 ] 

(1) 

 

𝑑𝑇

𝑑𝑡
=

𝑄𝑏𝑎𝑙𝑎𝑛𝑐𝑒

𝐻𝐸𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
=

𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡

𝑐𝑝 ∗ 𝑚

=
𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡

𝑐𝑝 ∗ (𝜌 ∗ 𝑉)
 [

𝐾

𝑠
] 

(2) 

 

𝑄 = 𝐴 ∗ 𝑈 ∗ ∆𝑇  [𝑀𝑊] (3) 

 

The temperature difference in the heat exchangers 

is calculated based on equation (1), where h is used for 

the hot fluid (flue gasses) and c for the cold fluid (water 

and steam). Subscripts 1 and 2 indicate inlet and outlet 

value for the parameter respectively. Q is used for 

exchanged heat, A is surface of heat exchanger, U is 

overall heat transfer coefficient and T is temperature. 
Using equations (1-3), energy balances of all 

components of interest are calculated.  

The key part of boiler analysis is fuel analysis. This 

boiler uses a mix of woody fuels.  

In regular operation, moisture is analyzed for all 

incoming shipments of wood to the plant by taking 

random samples and measuring the moisture content. 

With this approach, the plant has documented the yearly 

variation of the moisture, on average per month. Yearly 

variations of moisture are displayed in Figure 3. Total 

heat input in the furnace is obtained as a product of 

lower heating value (LHV) of fuel, calculated using the 

moisture content reading and the fuel mass flow. 

 

 

Figure 3. Yearly variation of moisture and heat input 

However, this information doesn’t allow for 

analysis with 1min sampling time. The moisture content 

has the highest variation in woody fuels, while the other 

components of elemental analysis (C, H, O, N, S and 

ash) have minimal variation. 

In this work, results from lab analysis of the fuel 

used in the plant, are used for values of elemental 

analysis components on dry basis. The moisture content 

value can be read from the spectra sensor installed on-

line above the conveyor belt. Using the moisture value 

and fuel conversion equations, we obtain values for fuel 

composition on wet basis (as received) and use the 

values to calculate the fuel heating value, hence 

simulating moisture variations in real-time.  

The fuel heating values (LHV and HHV) are 

calculated by (Saidur et al., 2011): 

 

𝐻𝐻𝑉 = 0.3491 ∗ 𝑋𝐶 + 1.1783𝑋𝐻

+ 0.1005𝑋𝑆 − 0.0151 ∗ 𝑋𝑁

− 0.1034 ∗ 𝑋𝑂 − 0.0211
∗ 𝑋𝑎𝑠ℎ  [𝑀𝐽/𝑘𝑔] 

 

(4) 

 

𝐿𝐻𝑉 = 𝐻𝐻𝑉 ∗ (1 −
𝑤

100
) − 2.444 ∗

𝑤

100

− 2.444 ∗
ℎ

100
∗ 8.936

∗ (1 −
𝑤

100
) [

𝑀𝐽

𝑘𝑔
] 

(5) 

where: Xi is wt.%. content of the fuel elements on dry 

basis, w is moisture content, and h is hydrogen content. 
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Enthalpies and specific heat capacities of the 

streams are calculated using polynomial functions 

(Wester, 2015). Other required parameters for the model 

are obtained from plant documentation (geometry of 

boiler and capacity of heat exchangers) and tuning 

parameters are tuned based on historical operational 

values. The model operates on simplification for full 

conversion of combustible fuel elements to flue gasses. 

In order to capture the dynamics of the process and 

to have a suitable framework for comparison of the 

model, key inputs and outputs are identified. These are 

used during model validation, system identification and 

control simulations. Key parameters are listed in Table 

2. Several key process indicators cannot be obtained 

from the plant because there are no present sensors for 

them. There is no measurement signal on fuel mass 

flow, temperature in the freeboard and mass flow of 

water sprays in the steam attemperators. Fuel mass flow 

is estimated based on other related parameters in the 

energy balance. Due to the lack of measured signals, 

some common comparisons for boiler performance, 

such as temperature profile in the furnace are not 

feasible. Selected outputs for comparison are chosen 

based on the available sensors: final steam temperature, 

flue gasses temperature (after superheaters stage), 

fluidized bed temperature and power output. 

Table 2. Key boiler parameters for model 

Inputs Outputs 

Fuel mass flow Power output 

Water mass flow Steam final temp. 

Fuel moisture (%) Fluidized bed temp. 

Air mass flow Flue gas temp. 

Recirc. Flue gas 

flow 

 

 

The final steam temperature is a key parameter for 

boiler operation. It is predefined from the manufacturer 

during construction and it can have small variations 

from nominal set-point, to ensure safe and efficient 

operation 

Since there is no temperature measurement of the 

freeboard temperature, the flue gasses temperature after 

the superheaters section is the first indicator that can be 

used to assess the operation. This parameter combined 

with the steam parameters measurements allows to 

back-calculate the temperatures of the flue gasses at 

various points. 

The fluidized bed temperature is the key parameter 

that indicates the operation stability for BFB boilers. 

This parameter has minimal variation, due to its 

characteristics – dense region with very high thermal 

capacity. 

The power output is key for the control action. Most 

of the time, the power output is adjusted to satisfy 

supply and demand for electricity and heat, and 

controlled change of setpoint is made to achieve it. It is 

calculated the balance betweenas the energy contained 

in the steam at the final point (after the last superheater, 

before turbine inlet) and the starting condition 

(feedwater tank). 

After developing dynamic model for the analyzed 

plant, the model is tuned and adjusted based on the 

historical values of the operational parameters. Model 

validation is done by running developed model with 

operation data for the key inputs and comparing the 

output of the model against the operation data. In order 

to make use of the developed dynamic model for 

control, it needs to be converted in a suitable form, so 

that a control structure can work with it. For this work 

we use linear MPC, developed in Matlab, based on 

identified linear state-space model.  

3.3 System identification 

State space model is a mathematical form of a system 

that contains input, output and state variables. Equation 

6 shows the form of Discrete-time identified state-space 

model, identified with n4sid function in Matlab: 

 

{
𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝐾𝑒
𝑦 = 𝐶𝑥 + 𝐷𝑢 + 𝑒

 (6) 

where: x is state vector, y is output vector, u is input 

vector, e is disturbance vector, A, B, C, D, and K are 

state-space matrices. 

Subspace identification is used to identify linear 

state-space, which will be the basis for the MPC design. 

Important for the identified model is to have good fit 

with the output data and to capture process dynamics.  

The inputs for the SI process were constituted by 

step changes in the chosen input signals, with increase 

and decrease of predefined ratios of 1, 2.5, 5 and 10%. 

Step signals are combined in a way to capture the impact 

of coupling inputs on the observed outputs. The input 

sequence generated for this work contains all 

combinations of inputs excitation. Inputs and outputs 

are used from Table 2, only fuel moisture is used as 

disturbance. 

For the defined set of inputs and outputs, a 5th order 

state space model is identified with n4sid function in 

Matlab, and it represents the internal model for MPC 

design and tuning. 

3.4 Control structures 

Model predictive control (MPC) can be defined as 

class of control algorithms that utilizes an explicit 

process model to predict the future response of a plant 

(Qin and Badgewell, 2013). MPC uses a dynamic model 

of the plant to predict future actions of the manipulated 

variables on the plant output. MPC is defined with: 

process model, set of constraints and objective function. 

The function that describes the MPC can be found in 

literature under the names of objective, target or cost 
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function. This function provides information about the 

importance given to control error minimization and 

frequency of actuators operation. The process model 

should capture the dynamics of inputs, outputs and 

disturbances in the controlled process. The drawback is 

that MPC is more complex to develop compared to 

conventional PI control, and it requires more time to 

develop and tune properly. 

PI (Proportional and Integral) Control is a 

commonly applied control structure in industry. It 

combines the benefits of proportional and integral 

control into one. PI scheme is presented in Figure 4. The 

PI controller does not receive signal about the 

disturbance in the system. 

 

Figure 4.  PI Control Scheme 

A commonly used equation for PI controller is:  

 

𝑝(𝑡) = 𝑝̅ + 𝐾𝑐 (𝑒(𝑡) +
1

𝜏𝐼

∫ 𝑒(𝑡∗) 𝑑𝑡∗
𝑡

0

) (7) 

where p(t) is the controller output, Kc is the proportional 

gain, e(t) is the measured error between output signal 

and setpoint, 𝜏𝐼 is the integral time.  

The three PI controllers were tuned using an internal 

model control method and the control parameters were 

successively fine-tuned to improve the performance 

(Tan et al., 2006). For a full comparison, the PIs were 

integrated with feed-forward (FF) for disturbance 

rejection for case 2. The FF model was set as a first order 

input-output model according to equation 6.  

 

 

𝑝𝐹𝐹 = −𝑑 ∙
𝐺𝑑

𝐺𝑝

   (8) 

 

Where 𝑝𝐹𝐹 is added to the PI output, d is the 

disturbance signal, and Gd and Gp are first-order 

transfer functions between d and y (process output), and 

p and y respectively. FF PI scheme is presented in 

Figure 5. The disturbance signal is added to the PI 

controller as FF. 

The control parameters used for the PI control in 

both configurations is provided in Table 3. This table 

also contains information about the connection between 

inputs and outputs in the PI logics i.e. which input is 

manipulated to control a specified output. 

 

 

Figure 5.  FF PI Control Scheme 

The PI structure contains 3 SISO (Single Input 

Single Output) control loops, listed in Table 3. 

Table 3. PI controller parameters 

Control loop Proportional 𝑲𝒄 Integral 𝝉𝑰 

Fuel mass flow  

Power Output 

0.4 (-) 150 (s) 

Water mass flow   

Final Steam temp. 

-0.55 (-) 600 (s) 

Total air mass flow   

Fluidized bed temp. 

-0.5 (-) 1500 (s) 

 

After importing the identified model in the MPC 

Toolbox in Matlab, its parameters are defined. Nominal 

values for the input and outputs are set, constraints on 

the inputs range and rate of change are set. Key MPC 

parameters used are provided in Table 4, while the 

constraints used for all controllers are listed in Table 5. 

Table 4. MPC parameters 

MPC Parameter Value  

Sampling time 60 (s) 

Prediction horizon 10 

Control horizon 2 

 

The error between future outputs and target values is 

minimized by means of a quadratic objective function, 

presented in Equation 9: 

 

𝐽 = 𝑊
𝑗

𝑒𝑦𝑆𝑒𝑦
(𝑘)2 + 𝑊𝑗

𝑀𝑉𝑆𝑀𝑉(𝑘)2

+ 𝑊𝑗
∆𝑀𝑉𝑆∆𝑀𝑉(𝑘)2 

 

(9) 

The three terms in the objective function refer to the 

output error ey (between controlled variables and 

targets), the manipulated variables (MV), and the 

change rate of manipulated variables. The weights Wj 

penalize each term in a different way. 

Table 5. Constraints on manipulated parameters 

Input Nominal value 
(kg/s) 

Control range 
constraints (kg/s) 

Fuel flow 13.7 6 – 16 

Water flow 35 20 - 40 

Air flow 50 40 - 60 
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MPC control scheme is presented in Figure 6. The 

MPC controller does not receive signal about the 

measured disturbance in the system. 

 

Figure 6.  MPC Control Scheme 

 

FF MPC control scheme is presented in Figure 7. The 

disturbance signal is added to the MPC controller as FF.  

 

 

Figure 7.  MPC FF Control Scheme 

 

4 Results 

After developing the control structures, they are 

compared in various scenarios, for their capability to 

deal with system disturbances and set points change. 

The moisture content (%) in the fuel is the system 

disturbance. Four types of controllers are compared – PI, 

FF PI, MPC and FF MPC. A list of scenarios, 

description of changes made in each setpoint and 

disturbance signal is provided in Table 6.  

The controllers are analyzed in these scenarios for 

control and statistical metrics. Control metrics are 

overshoot, rise and settling times, which are common 

indices for evaluating controller performance, while 

statistical metrics used are the mean absolute error and 

standard deviation. Control metrics are chosen as 

standard control performance test, while statistical 

metrics can show us how much variation in controlled 

outputs we can expect during control scenarios and 

control actions. Since in scenario 3 we analyze the 

performance of controller to keep constant setpoint 

rather than response to step change, in this scenario we 

provide only statistical metrics. 

The overshoot values for Scenarios 1 and 2 are 

displayed in Table 7. The values are expressed in % of 

the new set point and represent the height of the first 

peak after crossing the new setpoint value.  

Rise time is defined as the time required for the 

output to change from 10% to 90% from the initial to 

the new setpoint.  

Settling time is considered as the time required to 

reach 2% error between the signal and the new setpoint 

value.  

Since settling and rise time are related to the change 

of setpoint, they are analyzed only for scenarios 1 and 2. 

Settling and rise times are shown in Tables 8 and 9 

respectively. Due to limited space, statistical indicators 

and plots of inputs and outputs are shown only for 

Scenario 3. Absolute mean error is shown in Table 10, 

while standard deviation is in Table 11. Inputs are 

plotted in Figure 8, while outputs are plotted in Figure 

9.  

The simulations are done towards assessing the 

capability of the 4 controllers to deal with different 

control scenarios. Results are reported on 60s sampling 

time. It can be noted that results differ in the scenarios 

and the criteria for evaluation. This shows that we can’t 

label one control option as absolutely best rather the best 

one for a specific application or in testing scenario. 

It has to be noted that no weights are added in MPC 

tuning during this work to favorize one input or output 

on the expense of the rest. Adding weights on the inputs 

and the outputs would cause the controller to put more 

effort towards one parameter than the others and would 

make the comparison uneven. 

Scenario 3 is the closest to real operation control 

actions. The disturbances are frequent during operation, 

and they come with different magnitudes due to the 

random uniform signal block used in Simulink. This 

signal is generated with sampling time of 50min. It can 

be said that Scenario 3 is solid basis towards more 

demanding control actions analysis.  

Overshoots analysis shows that the lowest overshoot 

for all controllers is in output 3 – fluidized bed 

temperature, due to the huge thermal inertia of this 

region and slow changes. 

On the settling time analysis, it takes the longest time 

to settle to the specified new setpoint, which is to be 

expected due to the same characteristic that makes the 

minimal or no overshoot. 

From the results of scenario 3, we can observe that in 

statistical parameters, controllers with FF show better 

performance compared to the ones without FF – lower 

error and deviation. MPC FF has the lowest error and 

deviation in this Scenario. In all 3 scenarios, PI control 

has the worst control on output 3 – temperature of 

fluidized bed. Except for this parameter, we can see that 

for the other parameters the difference between MPC 

and PI controllers is not big.   
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Table 8. Settling time (s) 

Scenario Scenario 1 Scenario 2 

Controller Steam temp. Power FB. temp. Steam temp. Power FB. temp. 

1. PI 720 1080 4620 1680 540 8640 

2. FF PI 720 1080 4620 2340 840 8340 

3. MPC 480 600 1680 3720 1680 4380 

4. FF MPC 1320 540 960 1680 1380 3900 

 

Table 7. Overshoot (%) 

Scenario Scenario 1 Scenario 2 

Controller Steam temp. Power FB. temp. Steam temp. Power FB. temp. 

1. PI 0 0.04 0 3.4 1 0.8 

2. FF PI 0 0.04 0 1.1 0.04 0.7 

3. MPC 0.17 0.2 0 0.82 2.6 0.4 

4. FF MPC 0 0.3 0 0.16 0.67 0.1 

 

Table 9. Rise time (s) 

Scenario Scenario 1 Scenario 2 

Controller Steam temp. Power FB. temp. Steam temp. Power FB. temp. 

1. PI 180 180 2220 120 120 300 

2. FF PI 180 180 2160 180 180 360 

3. MPC 420 120 180 120 120 120 

4. FF MPC 720 240 660 180 180 420 

 
Table 10. Mean absolute error (-) for Scenario 3 

Controller Steam temp. Power output Fluidized bed temp. 

1. PI 0.0648 0.0523 0.7130 

2. FF PI 0.1601 0.0196 0.6885 

3. MPC 0.3566 0.0644 0.2237 

4. FF MPC 0.0407 0.0079 0.0513 

 

Table 6. Analyzed Control scenarios 

Scenario Steam temp. 

setpoint [C] 
Power setpoint  

[MW] 

Fluid. Bed setpoint 

[C] 

Moisture disturbance 

[%] 

 

1 

Step: 535 – 520 

constant 

constant  

constant  

Step: 110 – 100 

constant 

constant 

constant 

Step: 910 - 900 

constant 

constant 

constant 

 

2 

Step: 535 – 520 

constant 

constant  

constant  

Step: 110 – 100 

constant 

constant 

constant 

Step: 910 - 900 

Step: 48 – 53 

Step: 48 – 53 

Step: 48 – 53 
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Table 11. Standard deviation (-) for Scenario 3 

Controller Steam temp. Power output Fluidized bed temp. 

1. PI 0.1476 0.1449 0.8622 

2. FF PI 0.2322 0.0584 0.8364 

3. MPC 0.6253 0.1390 0.2886 

4. FF MPC 0.0643 0.0178 0.0618 
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Figure 8. Control action on Inputs in Scenario 3 

 

Figure 9. Control action on inputs in Scenario 3 
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5 Conclusions 

Four different control strategies were implemented on a 

dynamic boiler model and compared, based on control 

and statistical metrics. It was shown that adding feed-

forward signal about the fuel moisture, improves the 

control parameters for both PI and MPC control. By 

most analyzed parameters FF MPC shows the best 

performance. 

PI FF control provide better results than MPC for 

the outputs which can be controlled with 1 input 

manipulation. For the output that depends on most 

inputs (fluidized bed temperature), MPC show better 

control results. This shows the limitation of PI control.  

FF MPC with accurate characterization of the fuel 

moisture can help towards dealing with the disturbances 

in the plant caused by fuel characteristics variation. 

Future work is aimed towards exploring the 

capabilities of MPC with more operation realistic 

scenarios. Change of power output based on 

documented operational data, introduce performance 

deterioration and constraints set based on actuators 

properties are some of the planned features to be added. 
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