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Abstract 
In this study, a model of a single shaft gas turbine (GT) 

is developed by using artificial intelligence (AI).  A 

recurrent neural network (RNN) is employed to train the 

datasets of the GT variables in Python programming 

environment by using Pyrenn Toolbox. The resulting 

model is validated against the Test datasets. Thirteen 

significant variables of the gas turbine are considered for 

the modelling process. The results show that the RNN 

model developed in this study is capable of performance 

prediction of the system with a high reliability and 

accuracy. This methodology provides a simple and 

effective approach in dynamic simulation of gas 

turbines, especially when real datasets are only available 

over a limited operational range and using simulated 

datasets for modelling and simulation purposes is 

unavoidable. 
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intelligence, recurrent neural network, black-box model 

1 Introduction 

Todays, Artificial intelligence (AI) plays a key role in 

the industrial world and has a meaningful and influential 

presence in many aspects of daily life. AI is an area of 

computer science that deals with performing human-like 

tasks. As one of the most popular applications of AI, one 

can refer to Machine learning (ML). ML is a research 

area that deals with data analysis, and a variety of 

approaches for computers to learn from datasets when 

no specific algorithm exits.  ML is used in many 

industrial systems  such as gas turbines for pattern 

recognition, system identification, trouble shooting, 

sensor validation, condition monitoring, modelling,  

simulation, and performance prediction (Liu et al., 

2020; Cisotto and Herzallah, 2018; Kiakojoori and 

Khorasani, 2016). 

One of the main tools used in machine learning is 

artificial neural network (ANN). ANN, as a subset of 

artificial intelligence, has been widely used over the past 

decades. The main idea for creating an ANN was to 

mimic the human brain as a simple model that was 

capable of solving complex problems in different 

scientific fields. As a brain-inspired data-driven model, 

ANN has shown to be a very good alternative to white-

box approach for modelling and simulation of industrial 

systems and processes. It has been very useful for the 

researchers whose activities cover a wide range of 

system identification and simulation techniques. A 

recurrent neural network is a subset of ANN that is used 

to setup dynamic models of industrial systems. 

Gas turbines are broadly employed, such as airplane 

engines. They are also widely used for power 

generation, especially in the areas that are far away from 

cities; where access to the national electrical grid is 

limited. Oil & gas fields, offshore platforms, ships, and 

marine infrastructures are examples of such places. The 

significant role of GTs in industry has strongly 

encouraged and motivated researchers to investigate 

new methodologies for modelling these complex 

systems. The desired models should be able to capture 

the system dynamics as accurately as possible.  So far, 

many different experimental and analytical 

methodologies have been explored to reach this goal. 

The research in this area is included in both stationary 

(mainly located in power plants) and aero gas turbine 

engines (Asgari et al., 2012, 2013a).  

ML-based techniques like ANN have shown the 

capability to predict dynamic behavior of GTs without 

having access to information about the system physics. 

Different ANN-based methodologies have already been 

investigated and developed in order to disclose complex 

nonlinear behavior of aero gas turbines (Agrawal and 

Yunis, 1982; Chiras et al., 2001, 2002; Ruano et al., 

2003; Torella et al., 2003; Sarkar et al., 2012, 2013; 

Salehi and Montazeri, 2018; Ibrahem et al. 2019). These 

efforts have covered a variety of approaches such as 

MLP (multi-layer perceptron), NARMAX (nonlinear 

auto-regressive moving average with exogenous 
inputs), NARX (nonlinear autoregressive exogenous 

model), RBF (radial basis function), BPNN (back 

propagation neural networks), and BSNN (B-spline 
neural networks). 

Besides, many studies have focused on ANN-based 

modelling of industrial power plant gas turbines 

(IPGT). The results of these studies demonstrated the 

capability of ANN in capturing IPGT dynamics 
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(Lazzaretto and Toffolo, 2001; Kim et al., 2001, 2002; 

Ogaji et al., 2002; Basso et al., 2004; Jurado, 2005; 

Simani and Patton, 2008; Fast et al., 2008, 2009; Yoru 

et al., 2009; Tavakoli et al., 2009; Fast and Palmé, 2010; 

Palmé et al., 2011; Bartolini et al., 2011; Asgari et al., 

2013b, 2014, 2015, 2016). ANN has also been used for 

control-oriented modelling of GTs (Asgari et al., 2017). 

ANN may be used for fault identification and warning 

generation with high reliability. Arriagada et al. (2003), 

Elashmawi et al. (2017, 2018), and Rahmoune et al. 

(2017) used novel ANN-based models for monitoring 

and fault detection of industrial gas turbines. 

From the literature survey, many efforts have been 

made in the area of black-box modelling of gas turbines, 

with their own advantages and limitations. However, 

because of complex nonlinear dynamics of GTs, and 

their different applications, sizes and capacities, study in 

this area is still a challenging issue. Further research still 

need to be carried out to develop the GT models, and to 

optimize design and performance of these engines. The 

work reported in this publication can help to disclose 

details of the problems that cause unpredictable 

shutdowns, over-heating, and over-speed of GTs on 

industrial sites.  

In this study, a black-box model of a single shaft gas 

turbine is modelled and simulated by using a recurrent 

neural network. The RNN is employed to train datasets 

of the gas turbine in Python programming environment. 

First, the performance of a typical gas turbine is briefly 

explained in Section 2. Then, in Section 3, a short 

description about recurrent neural networks is 

presented. Section 4 describes modelling procedure 

including data acquisition, data processing, building 

RNN structure, code generation, and training process. 

The results are presented in Section 5. Finally, the output 

of the research is briefly discussed in Section 6.  

2 Gas Turbines 

A gas turbine is classified as an internal combustion 

engine that converts chemical energy to mechanical 

energy. It is widely used for industrial applications. GT 

may be connected to a generator, pump or compressor 

as the main driver to shape a turbo-generator, a turbo-

pump, or a turbo-compressor respectively. Figure 1 

illustrates the main components of a single shaft open-

cycle constant-pressure gas turbine engine 

(Encyclopedia Britannica, Inc., 1999). Both the 

compressor and the turbine are installed on the central 

shaft and rotate together.  

Operation of an industrial gas turbine is shown in 

Figure 2. According to this figure, the compressor 

receives air at point 1 and delivers hot compressed air to 

the combustion chamber (combustor) at point 2. The 

mixture of fuel and air is ignited inside the combustion 

chamber to form the hot gases at point 3. These hot gases 

pass through the turbine and rotate it. The output power 

of the turbine provides the required energy for driving 

the compressor part, and the GT mechanical output. 

Operation of a gas turbine is based on Brayton cycle. 

A temperature-entropy (T-S) framework-based of a 

standard Brayton cycle is illustrated in Figure 3 (Arabi 

et al., 2019). According to this figure, 1-2-3-4-1 shows 

the ideal cycle, while 1-2´-3´-4´-1 indicates the real 

cycle. In the real cycle, processes in both the compressor 

(1-2´) and the turbine (3´-4´) are non-isentropic and 

irreversible. In the ideal cycle, these processes are 

assumed isentropic. Processes 2-3 and 4-1 may be 

considered isobar, if pressure losses in combustor and 

air filters are neglected (Walsh and Fletcher, 1998). 

 

 

Figure 1. A typical single shaft gas turbine engine 

(Encyclopedia Britannica, Inc., 1999). 

 

 

Figure 2. A schematic of a typical single shaft gas 

turbine. 

. 

 

Figure 3. Ideal and real Brayton cycles in temperature-

entropy diagram (Arabi et al., 2019). 
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3 Recurrent Neural Networks 

Simulation of all industrial systems can be carried out 

by using white-box or black-box models. When 

knowledge and information about the physics involved 

in a system are quite enough and dynamic model 

equations are available, white-box models can be 

employed, and different simulation software such as 

MATLAB and APROS may be used for modelling of the 

system dynamics. MATLAB is a multi-functional 

programming platform designed and developed by 

MathWorks for numerical computing in engineering and 

scientific applications. APROS is also a multi-functional 

software for modelling and dynamic simulation of 

industrial processes, such as power plants and other 

energy systems (Fortum and VTT, 2020). Dynamic 

equations usually need to be simplified (e.g. linearized) 

because of their nonlinear and coupled natures. 

However, the simplification process may negatively 

affect the accuracy of the resulting model.  

When the physics of a system is unknown or access 

to the relevant knowledge, dynamic equations and 

efficient solution techniques is limited, black-box 

modelling approach can be a good choice, and 

sometimes unavoidable. Black-box models can disclose 

the relationships among the system variables by 

employing input and output datasets. These datasets can 

be simulated or measured (experimental) data.  

Simulated data may be used when operational data are 

not available. 

ANN is a class of black-box models that can be used 

for simulation of gas turbines and other industrial 

equipment (Tiumentsev and Egorchev, 2019). The 

structure of an ANN consists of input, hidden and output 

layers. Each ANN may have more than one hidden layer. 

The layers may have different number of artificial 

neurons. These neurons (units) are internally connected 

by transfer functions, which can be linear or nonlinear.  

Artificial neural networks are capable of learning the 

relationship among inputs and outputs of a system 

through an iterative training process. Each input into the 

neuron is associated with its own adjustable number, 

which is called weight.  Weights are determined during 

the training process. The complexity of a system 

dynamics determines the number of hidden layers and 

their associated neurons. Figure 4 illustrates a typical 

ANN including three inputs, two outputs and one hidden 

layer with four neurons. 

Among different ANN algorithms for static and 

dynamic modellings, RNN can be employed for the 

modelling of dynamic industrial systems. In a recurrent 

neural network, each layer has a recurrent connection. 

This enables RNN to propagate data forward and 

backward, from later processing stages to earlier ones, 

allowing the network to have an infinite dynamic 

response to the input data. As a universal approximator, 

RNN has shown excellent dynamic ability to deal with 

various input and output types for modelling and 

simulation of industrial systems. 
 

 

Figure 4. The structure of a typical artificial neural 

network with input, hidden and output layers. 

4 Modelling Procedure 

To approach an RNN model with a high accuracy for the 

gas turbine of this study, a variety of structures was 

considered. These structures were set up based on the 

data type, training algorithms, types of activation 

functions, number of hidden layers, number of neurons, 

and values of the weights and biases. The goal was to 

attain a structure with the high capability of accurate 

prediction of the GT dynamic behavior. Using the most 

effective GT variables as inputs and outputs is vital for 

building a reliable model. Data availability, system 

knowledge, and modelling objectives are fundamental 

factors that should be considered for selection of the 

RNN inputs and outputs.  

4.1 Data Acquisition  

The first step in RNN modelling is to obtain enough 

reliable datasets. A dynamic model of a low-power gas 

turbine, simulated in Simulink/MATLAB environment 

was employed for data generation (Asgari et al. 2013b). 

The relevant white-box model was already developed 

and verified against experimental datasets (Ailer et al., 

2002). Totally, 3000 datasets were generated for 13 

different GT variables. In this study, the purpose of a 

dataset is a vector with 13 single values, corresponding 

to 13 different GT variables. Therefore, 3000 datasets 

cover 3000 vectors like that.  

The obtained datasets were categorized as inputs and 

outputs of the gas turbine engine according to Table 1 

and Table 2 respectively. As it can be seen from the 

tables, fuel rate, ambient temperature, ambient pressure, 

and load were determined as four main gas turbine 

inputs, while temperature and pressure at different 

operational points (corresponding to the numbers in 

Figures 2 and 3), compressor pressure ratio, rotational 

speed, and gas turbine efficiency were considered as GT 

outputs. To be able to evaluate the model generalization, 

and to avoid over-fitting during the training process, the 

datasets were alternatively divided into the Train and 

Test groups. Half of the datasets (1500 out of 3000) were 

employed for training the RNN, and the remaining 

datasets were used to test the resulting model. 
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Table 1. Gas Turbine Input Parameters. 

Variable Symbol Unit 
Operational 

Range 

Fuel rate Mf kg/s [0.00367; 0.027] 

Ambient 

temperature 
T01 K [243.15; 308.15] 

Ambient 

pressure 
P01 kPa [60; 110] 

Load MLoad N.m [0; 363] 

 

Table 2. Gas Turbine Output Parameters. 

Variable Symbol Unit 

Temperature at point 2 T02 K 

Temperature at point 3 T03 K 

Temperature at point 4 T04 K 

Pressure at point 2 P02 kPa 

Pressure at point 3 P03 kPa 

Pressure at point 4 P04 kPa 

Compressor pressure ratio  CPR - 

Rotational speed  

(number of revolutions) 
N 1/s 

Gas turbine efficiency EGT - 

 

4.2 RNN Structure 

Since the gas turbine is a dynamic system, the aim of 

this research is to create a recurrent neural network, in 

which the output parameters of the current time-step 

depends on the output parameters in the previous one. In 

this study, an RNN model was designed with four inputs, 

one hidden layer, and nine outputs. The network was 

named RNN 4-H-9 according to its structure (see Figure 

5). 

 

Figure 5. The structure of the recurrent neural network 

RNN 4-H-9. 

4.3 Code Generation & Training Process 

To achieve an RNN model with good generalization 

characteristic, details of the network structure should be 

determined as accurately as possible. For this purpose, a 

comprehensive computer code was developed in Python 

programming environment. Python is a high level, 

interpreted, and object-oriented programming language, 

firstly created and used by Guido van Rossum in 1991. 

The Pyrenn Toolbox, integrated in Python, was used for 

training and testing RNN 4-H-9. Pyrenn allows the 

creation of a wide range of RNN configurations. It 

employs LM (Levenberg–Marquardt) algorithm for 

training the network. LM is a second-order Quasi-

Newton optimization algorithm, which is much faster 

than first-order methods such as gradient descent 

(Suzuki, 2011). The RNN 4-H-9 model was trained by 

following a flexible programming code and assigning a 

combination of different values for the number of 

neurons in the hidden layer, the maximum number of 

iterations, the number of recurrent connections, and 

delay in the recurrent connections. The results of the 

simulation were figured for all the nine GT output 

parameters, and were compared to both the Train and 

Test datasets. The goal was to see how accurately the 

RNN outputs follow both the Train and Test datasets 

trends.  According to the results, the optimal RNN model 

was achieved after 1200 iterations, with eight neurons in 

the hidden layer, a recurrent connection with delay of 1 

time-step in the hidden layer, and a recurrent connection 

with delay of 1 and 2 time-steps from the output to the 

first layer.  

The root mean squared relative error (RMSRE) of the 

results for the RNN model was calculated according to 

Equation (1), where nd is the number of datasets, y is the 

available (simulated) data, and ym is the prediction of the 

RNN model. 
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𝑦
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         (1) 

5 Results  

Figures 6 to 14 compare outputs of the GT with the 

outputs of RNN 4-H-9, for both the Train and Test 

datasets (targets). Figures 6 to 8 show the comparison 

between outputs of the RNN model and the GT Train 

and Test data for temperatures at different operational 

points of the GT (T02, T03, T04). In Figures 9 to 11, the 

results are shown for the pressure variables (p02, p03, 

p04). Figures 12, 13, and 14 indicate the same 

comparison for the compressor pressure ratio (CPR), 
rotational speed (N), and GT efficiency (EGT) 

respectively. Comparisons between outputs of the GT 

and the RNN model for the Train datasets demonstrate 

satisfactory results for the training process. The 

resulting RNN model was validated against the Test 
datasets. According to Figures 6 to 14, the validation 

results are also satisfactory for all GT output parameters. 

As these figures show, the outputs of RNN 4-H-9 follow 

the targets very closely for both the Train and Test 

datasets.  

Figure 15 shows a comparison between RMSRE (%) 

of RNN 4-H-9 outputs for the Train and Test datasets.  
According to this figure, the average RMSRE (%) of the 
nine output variables (Ave.) for the Train and Test 

datasets are about 0.22% and 2.6% respectively. It 

demonstrates that the RNN model developed in this 

study has a high reliability and accuracy in capturing the 

system dynamics. 

6 Conclusions 

In this study, a recurrent neural network of a single shaft 

gas turbine was investigated and developed in Python 

programming environment by using Pyrenn Toolbox, 

and employing 3000 simulated datasets for thirteen 

significant variables of the GT. The resulting model was 

validated against the Test datasets. The results 

demonstrated that response of the RNN model to 

variations in input parameters followed the system 

outputs with an acceptable accuracy. It proves that the 

RNN model is capable of performance prediction of the 

system with a high reliability. The methodology 

employed in this study provides a simple and reliable 

approach in dynamic modelling and simulation of gas 

turbines, especially when access to operational datasets 

is limited for any reason.  
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Figure 6. A comparison between output of the RNN 

model and the GT Train and Test datasets for T02. 

 
Figure 7. A comparison between output of the RNN 

model and the GT Train and Test datasets for T03. 

 
Figure 8. A comparison between output of the RNN 

model and the GT Train and Test datasets for T04. 
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Figure 9. A comparison between output of the RNN 

model and the GT Train and Test datasets for P02. 

 
Figure 10. A comparison between output of the RNN 

model and the GT Train and Test datasets for P03. 

Figure 11. A comparison between output of the RNN 

model and the GT Train and Test datasets for P04. 

 
Figure 12. A comparison between output of the RNN 

model and the GT Train and Test datasets for compressor 

pressure ratio (CPR).  

 
Figure 13. A comparison between output of the RNN 

model and the GT Train and Test datasets for rotational 

speed (N).  

 
Figure 14. A comparison between output of the RNN 

model and the GT Train and Test datasets for GT 

efficiency (EGT).  
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Figure 15. RMSRE (%) of RNN 4-H-9 outputs for the GT 

Train and Test datasets. 
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