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Abstract

Overheating of synchronous generators may lead to a
shortened generator lifespan, thus strict constraints are im-
posed on their operation. A common constraint is to re-
strict the power factor of the generator to lie below, say,
0.86 overexcited. In some recent work, a dynamic ther-
mal model of the generator with cooling heat exchanger
has been developed; the idea is that this allows for bet-
ter monitoring of generator temperature, while relaxing
on the power factor constraint. The current model is only
valid for an ideal case of constant heat capacity. In this
work, the generator model is extended to allow for tem-
perature dependence in heat capacity of water and air in
the heat exchanger model. The consequence of this more
realistic model, is that it is no longer possible to find an ex-
plicit, analytic solution of the heat exchanger model, and it
is now necessary to instead solve numerically a two point
boundary value problem for each time step in the differen-
tial equation solver.

It is shown that the effect of temperature dependence in
the heat capacities has a noticeable effect on the solution
of the model. The inclusion of on-line numeric solution of
the heat exchanger model does, however increase the com-
putation time of the thermal generator model by a factor
of several thousand. Here, we instead study the possibil-
ity to solve the numeric heat exchanger model multiple
times off-line, and then fit a regression model that gives a
correction to the analytic solution. Both linear regression
and nonlinear regression (neural network) is considered.
Both types of regression models allow for a speed-up in
the computation time of the thermal generator model of a
factor of around 2000. In the computations, computer lan-
guage Julia was used, with the DifferentialEquations and
the Flux packages.

Keywords: linear regression, nonlinear regression, ther-
mal model, machine learning, surrogate model, hybrid
model.

1 Introduction
1.1 Background

Synchronous generators operated at high power factor
face high currents, and potential overheating. To protect
the generators from overheating, European hydropower
generation limits the power factor to the range [0.85,0.95]
overexcited, while in Norway the power factor should be
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less than or equal to 0.86 (Pandey, 2019). It is of interest
to allow for more flexible constraints on the power factor
to better handle sudden changes in consumption. To do
this, it is necessary with good monitoring and control of
generator temperatures; this possibility was discussed in
(@yvang, 2018).

1.2 Previous work

As a further study of the thermal generator model in (@y-
vang, 2018), Lie' proposed a slightly more formal model,
still assuming constant heat capacity in materials. This

model was further studied in (Pandey, 2019); Pandey
et al., 2019), where temperature dependences in heat ca-
pacities were introduced. Temperature dependence in heat
capacities of air and water invalidates the analytic solution
of the heat exchanger model, requiring the numeric solu-
tion of a static two-point boundary value (TPBV) problem
for every time step in the time integration. The numeric
solution of the TPBV problem is much slower than evalu-
ating the analytic expressions (Lie?), leading to excessive
computation time for model fitting, and on-line uses such
as state estimation and advanced control. It is therefore of
interest to study the development of simplified models/-
surrogate models for the heat exchanger. A standard pro-
cedure would be to solve the TPBV heat exchanger model
multiple times off-line, and then fit a regression model
to the generated data. Data for surrogate models do not
contain measurement noise per se, so an alternative to a
regression model could be table look-up or interpolation.
Still, regression models are often simpler, and there may
be some “noise” due to inaccuracies in numeric computa-
tions. The problem of overfitting the data is relevant for
surrogate models.

1.3 Overview of the paper

Instead of solving the nonlinear TPBV problem of temper-
ature dependent heat capacities within the time integrator
of the thermal synchronous generator model, data-driven
surrogate models were developed for the nonlinear heat
exchanger model as a correction to the analytic solution.
The goal is that this hybrid heat exchanger model consist-
ing in the analytic, ideal solution combined with the ex-

ILie, B.: Solution to Project in course FM1015 Modelling of Dy-
namic Systems at University of South-Eastern Norway, 2018.

2Lie, B.: Lecture Notes in course FM1015 Modelling of Dynamic
Systems at University of South-Eastern Norway, 2019.
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Figure 1. Thermal model of aircooled synchronous generator.

plicit surrogate correction, should give considerably faster
solution time for the thermal generator model. Both lin-
ear regression and nonlinear regression (neural network)
are considered, and validation is used to choose model or-
der/avoid overfitting.

The paper is organized as follows. Section 2 describes
the problem that arise from temperature dependence in the
heat capacities and the impact on simulation time. Section
3 describes linear regression and the idea of validation,
while Section 4 describes nonlinear regression. Results
are discussed in Section 5, and some conclusions are given
in Section 6.

2 Solution of the Counter-Current
Heat Exchanger Model

A thermal model of a counter-current heat exchanger was
developed in Lie?.

The following explicit/analytic expressions were
formed for the effluent temperatures of the tube side (7))
and the shell side (7):
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Here, T\ and T}* are the influent temperatures of the heat
exchanger. Ny, and Ng, are the Stanton numbers of the

tube side and the shell side, respectively. Also, NSAt is the
difference in Stanton numbers, and is expressed as:
A t

Ng; — Ng;.

Ng, = 3)

In addition, the temperature profile across the heat ex-
changer length can be obtained by substituting the explicit
expression of 7} in the following equations:

3Lie, B.: Lecture Notes in course FM1015 Modelling of Dynamic
Systems at University of South-Eastern Norway, 2019.
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The Stanton numbers Ng, and N, for the tube side and
the shell side, respectively, are given as

UA

N§ = —— (6)
Cp,ty
UA

N§ = —, 7
Cp,sTis

where % Ay is the heat transfer coefficient, ¢, and ¢, s
are the specific heat capacities at constant pressure, and
e and rig are mass flow rates.

The previous analytic expressions are only valid for an
ideal heat exchanger model with constant Stanton num-
bers. For a more realistic heat exchanger model, specifi-
cally, a model with temperature dependence in the heat ca-
pacities, a numeric solution is required. In this work, the
two-point boundary value problem of the thermal model is
solved numerically by utilizing the boundary value prob-
lem (BVP) solvers available in the DifferentialEquations
package for Julia (Rackauckas and Nie, 2017).

In the thermal model of Lie*, cold air is blown by a
fan into the gap between the rotor and the stator, which
cools the synchronous generator before returning to the
shell side of the counter-current heat exchanger. There,
the hot air is cooled by cold water passing in the tube side.
In this work, temperature dependence is only considered
in the heat capacities of air and water in the heat exchanger
part of the model.

Temperature dependence in the heat capacities is often
expressed as an empirical power series in 7 or as a polyno-
mial in 7 (Murphy, 2020). In this work, polynomials were
fitted to the experimental data in (Incropera et al., 2013)
and compared with the empirical equations in (McBride
et al., 2002). Figure 2 shows the comparison between the
specific heat capacities of (Incropera et al., 2013) and the
empirical equations of (McBride et al., 2002).

Furthermore, to study the impact of the temperature de-
pendence of the specific heat capacities of air and water on
the solution of the counter-current heat exchanger model,
the following models are considered:

* Model 1: An ideal heat exchanger model, which
is solved using the analytic expressions. The spe-
cific heat capacities of air and water are constant and
equal 1.15kJ/kg/K and 4.2kJ /kg/K, respectively.

4Lie, B.: Solution to Project in course FM1015 Modelling of Dy-
namic Systems at University of South-Eastern Norway, 2018.
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Table 1. Operating conditions of the heat exchanger model.
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Figure 2. A comparison between the specific heat capacities of
(Incropera et al., 2013) and the empirical equations of (McBride
et al., 2002).

* Model 2: An ideal heat exchanger model, which is
solved using the BVP solvers. The specific heat ca-
pacities are the same as in Model 1.

* Model 3: A non-ideal heat exchanger model with
¢,(T), which is solved using the BVP solvers. The
specific heat capacities are described by polynomials
constructed from the experimental data in Incropera
et al. (2013).

Figure 3 shows a comparison between the solution of
Model 1 and the solution of Model 3, where the operating
conditions are described in Table 1. Also, Table 2 shows
the benchmark results (simulation time) for the three mod-
els.

Analytic vs. Numeric Solution when €,(T)
40
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Figure 3. Analytic solution (solid lines) vs. numeric solu-
tion (dotted lines) when the specific heat capacities depend on
temperature. For the ideal model, the specific heat capacities
of air and water are constant, and equals 1.15kJ/kg/K and
4.2kJ /kg/K, respectively. For the numeric solution, the specific
heat capacities are described by polynomials constructed from
the experimental data in (Incropera et al., 2013).

Figure 4 shows a comparison between thermal gener-
ators model with heat exchanger Model 1 vs Model 3 at
the operating conditions. Table 3 shows the benchmark
results for the generator model when the three heat ex-
changer sub-models are used.
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Symbol Description Value
Inputs u

T, Cold water temperature 3.8°C

TP Hot air temperature 39.1°C

Hily, Water mass flow rate 53.9kg/s

ity Air mass flow rate 49.2kg/s
Parameters 0

U Ay Heat transfer, air to water 44.46kW /K

Table 2. Benchmark results for the heat exchanger model.
Model 1 has median time 9 s and mean time 10.6 (s on a given
computer; times are scaled to unity at 1% row element.

Model Median time Mean time
Model 1 1 1
Model 2 443 451
Model 3 2120 1940

In this work, the following steps are taken to reduce
the simulation time of Model 3 (the case of temperature
dependence in the heat capacities):

* First, both Model 1 and Model 3 are solved for a va-
riety of conditions (T, Tah, My, and r1,), and the re-
sults are stored in a data matrix.

* Next, a data-driven model is developed by lin-
ear/nonlinear regression. Here, the regression model
is expressed as a correction term to the analytic ex-
pressions.

* Finally, the combination of the regression model and
the analytic expressions forms explicit expressions
that relate the influent temperature of water/air to the
effluent temperature of water/air. Solving explicit
expressions is much faster than solving a nonlinear
two-point boundary value problem numerically.

3 Linear regression

As described in (Gujarati, 2019), given a data set
{»i, x1i, X2i, ..., xx; }_, of n observations, a generic linear
regression model can be expressed as:

yi = Bixti+Boxoi+ ...+ B+ &, i={1,2,3,...,n};

®)
here, y is called the response variable. xi, x,..., x; are
called the regressor variables. f1, 5, ..., B are the regres-

sion coefficients or regression parameters. € is called the
disturbance term. The subscript i refers to the observation
in the data set. Moreover, equation 8 represents a system
of equations that can be stacked together and written in
matrix notation as:

y=XB+e¢, ©)

where y and € are n x 1 column vectors, and 8 is a k x 1
column vector. X is the design matrix of size n x k. In this
work, the possible regressors are:
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Analytic vs Numeric Solution of Air-Cooled Synchronous
Generator with Non-ldeal Heat Exchanger Model
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Figure 4. Analytic solution (solid lines) vs. numeric solution
(dotted lines) of the thermal generator model when the specific
heat capacities depend on temperature.

Table 3. Benchmark results for the thermal model of an air-
cooled synchronous generator. Model 1 has median time 5.4 ms
and mean time 6.6ms on a given computer; times are scaled to
unity at 1% row element.

Model Median time Mean time
Model 1 1 1
Model 2 451 363
Model 3 1820 1480

1. The hot water temperature of the analytic solution
(Tw™)

2. The cold air temperature of the analytic solution
(%)

3. Water mass flow rate (rity)

4. Air mass flow rate (rit,)

Also, the response variables are the effluent temperatures
(T“},] Noand TSN of the numeric solution when & »(T).
Since the number of response variables m > 1, then equa-
tion 9 is expressed as:

Y =Xp +¢; (10)

here, Y and € are n x m matrices, and 8 is a matrix of size
k x m. X is a design matrix of size n X k. In this work, the
columns of the design matrix are not the regressors them-
selves, but a polynomial of the regressors, which includes
an intercept and cross-product terms. Using the method of
ordinary least squares, an estimate of the regression coef-
ficients can be obtained by:

B =(X"X)"'XTy. (11)
Then, the regression function is expressed as:
§=Xp: (12)

here, § is the predicted value of y for a given design ma-
trix. The regression function predicts the effluent temper-
atures of the non-ideal heat exchanger model given the ef-
fluent temperatures of the ideal model.
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It is of interest to have a measure of goodness-of-fit,
i.e., how well ¥ predicts y. A simple predictor is the mean
¥y =¥, with uncertainty given by the sample variance

2
2 i1 (i —9)

o, ===

: . (13)

y =Y yi/n. With predictor y; = Zl}:l ﬁjxj’i, the vari-
ance is

2= Y (yi— 5 /n

i=1

(14)

with & =y —J;. Two measures of model quality are the
Root Mean Square Error (RMSE)?

RMSE = \/;g =0 = i(yi —3i1)?/n, (15)
i=1

and the Coefficient of Determination R? (Gujarati, 2019)

R*=1-o0;/0;. (16)
For a “perfect” model, R? — 1, while for a “poor” model
(the mean), R? — 0.

The sample variance Gy2 is biased because Eq. 13 uses

estimated mean y; estimate Gy2 has one degree of freedom.

The unbiased sample variance 52

Y 18

—\2
2= i1 yi—7) __n o2.
Y n—1 n—1"7

A7

The prediction error variance uses k estimated parameters
B/, thus has k degrees of freedom, and the corrected esti-
mate s2 is

2 no o

= o;.

Se A
Alternatively to measures RMSE and R?, the Standard Er-
ror of Estimate (SEE) (Smith, 2015)

SEE = \/s2 =s¢ = \/fm —$i)2/(n—k).  (19)
i=1

or the adjusted coefficient of determination R? defined as

(18)

n—1
n—k
are used. RMSE and SEE has the advantage of having the
same unit as y.

When solving Model 1 and Model 3, the following
cases were considered:

R=1-s;/ss=1- (1-R%) (20)

e Case 1: Constant mass flow rates and variable in-
fluent temperatures. In this case, the regressors are
TJJ’A and TaC’A. Also, the models are solved over the
range of (4 —30°C ) for Ty, and over the range of
(40 — 100°C) for Tah, while the mass flow rates are

kept constant at the values of Table 1.

Shttps://en.wikipedia.org/w/index.php?
title=Mean_squared_error&oldid=959959954
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* Case 2: Variable influent temperatures and mass flow
. o h A

rates. In this case, the regressors are rity, iy, Ty,
and TaC’A. Also, the models are solved over the range
of (4 —40°C ) for T, and over the range of (15—
130°C) for T;', and over the range of (15— 130kg/s

) for the mass flow rates.

In Fig. 5 and Fig. 6, R? and SEE were used to find the
order of the polynomial of the design matrix that gives
the best fit. Also, it can be observed in the figures that the
goodness-of-fit deteriorates due to overfitting as the model
order increases beyond a 5th order for case 1, and beyond
a 6th order for case 2.

Moreover, Fig. 7 and Fig. 8 show a comparison be-
tween the regression models and the numerical solution of
the nonlinear two-point boundary value problem for case
1. Also, in Fig. 7, the regression surface and the data
points overlap for the 5th order model, which indicates a
good fit. On the other hand, in Fig. 8, the regression sur-
face of the 12th order model does not match the data for
some parts, which indicates a bad fit.

Similarly, Fig. 9 and Fig. 10 show a comparison be-
tween the regression models and the numerical solution of
the nonlinear two-point boundary value problem for case
2. Also, in Fig. 9, the regression surface and the data
points overlap for the 6th order model, which indicates a
good fit. On the other hand, in Fig. 10, the regression sur-
face of the 12th order model does not match the data for
some parts, which indicates a bad fit.

R2 vs. Model Order SEE vs. Model Order

— T
— T

0.95

L L L L 0.0 L I L L
25 5.0 75 10.0 25 5.0 75 10.0

Model Order Model Order

Figure 5. R? and SEE of case 1. Left panel: The adjusted co-
efficient of determination vs. model order. Right panel: The
standard error of estimate vs. model order.

However, the results so far are based on models that
used the same data set for training and testing purposes,
which is not a good indicator of the models’ predictive
ability. To evaluate a model’s predictive performance and
select the best fit model, validation is required.

In this work, the Holdout method was implemented to
validate the models. The holdout method is one of the
simplest cross-validation methods, where the data is split
randomly into two data sets; a training set to estimate the
model’s parameters, and a test set to assess the perfor-
mance of the model. The training data set is usually larger
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R? vs. Model Order

SEE vs. Model Order

2.‘5 5‘0 7.‘5 16.0 2.‘5 5‘0 7.‘5 16.0
Model Order Model Order
Figure 6. R? and SEE of case 2. Left panel: The adjusted co-

efficient of determination vs. model order. Right panel: The
standard error of estimate vs. model order.

ThR vs. TN (5th Order Model)

TSR vs. TN (5th Order Model) [T

a0 N8 .
TSA[°Cly 25 30

20 % 20

15 15
7 TAra T 20

Figure 7. Case 1: A comparison between the regression model
(the surfaces in the figure) and the numerical solution of the non-
linear two-point boundary value problem (the data points) for a
Sth order regression model.

than the test set. Typically, the holdout method involves
a single run. In this work, the results of multiple runs are
averaged together to avoid misleading results. The vali-
dation results are presented in Table 4 for case 1, and in
Table 5 for case 2.°

Finally, the best fit model of case 1 achieved an aver-
age RMSE of 7-1078°C and 2-1078°C for 7! and T,
respectively. Also, the best fit model of case 2 achieved an
average RMSE of 0.117°C and 0.327°C for T," and T,
respectively.

4 Nonlinear regression

Nonlinear regression of the counter-current heat ex-
changer model is implemented in Julia using the package
Flux (Innes, 2018; Innes et al., 2018). Moreover, the non-
linear mapping between the analytic solution of the ideal
counter-current heat exchanger model and the numeric so-
lution of the non-ideal heat exchanger model (the case of
temperature dependence in the specific heat capacities of
air and water) is achieved using the logistic (also known

%Both SEE and R? are rounded to the 5th digit after the decimal
place.
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ThR vs. ThN (12th Order Model)

TSR vs. T¢'N (12th Order Model)

PG

40
TSR [°Cly 30 3

3
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Figure 8. Case 1: A comparison between the regression model
(the surfaces in the figure) and the numerical solution of the non-
linear two-point boundary value problem (the data points) for a
12th order regression model.

ThRvs. Th'N (6th Order Model)

TSR vs. TSN (6th Order Model)

Figure 9. Case 2: A comparison between the regression model
(the surfaces in the figure) and the numerical solution of the non-
linear two-point boundary value problem (the data points) for a
6th order regression model.

as sigmoid) activation function (o), which is introduced
between two linear layers in the classical Feedforward
Neural Network (FNN). Furthermore, the FNN is imple-
mented using the description in (Lie, 2019) and Flux docu-
mentation. In this work, the nonlinear regression model is
composed of two dense layers with the non-linearity (o)
between them as illustrated in Fig. 11.

In a similar manner to linear regression, the holdout
method was implemented to select the dimension (out) in
Fig. 11 that gives the best fit. The validation results are
presented in Table 6 and Fig. 12, where RMSE was chosen
as an indicator of goodness-of-fit. In Fig. 12, it is appar-
ent that increasing the dimension (out) beyond 80 would
result in a worse fit. Training of neural networks is sen-
sitive to scaling of the data, and it is common practice to
either normalize or standardize the data. Here, data X and
Y have been normalized to X and ¥ in the range [0, 1], e.g.,

X - Xmin

X=—"1 (21)
Xmax - Xmin

DOI: 10.3384/ecp2017691
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Th-Rvs, Th'N (12th Order Model)

TSR vs. TN (12th Order Model)

o Ti"

0

Figure 10. Case 2: A comparison between the regression model
(the surfaces in the figure) and the numerical solution of the non-
linear two-point boundary value problem (the data points) for a
12th order regression model.

Table 4. Validation results of case 1.

Model Avg. SEE, °C Avg. R?, —
order Th Tf Th TS
1 0.01798 0.01905 0.99938 0.99944
2 0.00858 0.0061 0.99986 0.99994
3 0.00267 0.00149 0.99999 1.0
4 0.00056 0.00028 1.0 1.0
5 7-107°  4-1073 1 1
6 0.0001  0.00012 1 1
7 0.01823 0.02451 0.99947 0.99923
8 0.04843 0.06575 0.99642 0.99474
9 0.09783 0.13253 0.98625 0.97992
10 0.17664 0.27147 0.95805 0.91988
11 0.27841 0.4126 0.90428 0.832
12 0.41207 0.59617 0.81076 0.68251

5 Results and Discussion

In linear/nonlinear regression, the counter-current heat ex-
changer model was solved for a variety of conditions (7,
Tah, Ty, 11y, and thermal dependencies) to generate a data
matrix. Then, validation was used to select the order of
the polynomial and the dimension (out) that gives the best
fit. Both case 2 of linear regression and nonlinear regres-
sion obtained a similar RMSE. Case 1 of linear regression
achieved lower SEE and RMSE compared to case 2. How-
ever, case | is only valid for a constant mass flow rate,
whereas case 2 is valid over a wide range of mass flow
rates. This highlights the importance of selecting the ap-
propriate ranges of TS, T, sy, and iz, when solving the
model. Selecting the appropriate ranges will result in a
lower model order and a better fit.

In this work, the polynomial of the design matrix was
generated using a user made function, which made the ex-
ecution speed of the hybrid solution with linear regression
relatively slower than the execution speed of the hybrid
solution with nonlinear regression. Table 7 compares the
execution speed of both solutions. To present a fair com-
parison between the linear and the nonlinear models, a 2nd

Virtual, Finland, 22-24 September 2020
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Table 5. Validation results of case 2.

Model | Avg. SEE, °C Avg. R?, —
order Th TS 7D TS
1 0.0529 0.1059 0.9848 0.9665
2 0.0479 0.0864 0.9876 0.9777
3 0.0456 0.0795 0.9888 0.9812
4 0.0443 0.0771 0.9895 0.9825
5 0.0418 0.0731 0.9908 0.9844
6 0.0415 0.0695 0.991 0.9862
7 0.0686 0.0783 0.976  0.9828
8 0.1246 0.1246 0.9241 0.9582
9 0.1731 0.1774 0.8606 0.9192
10 0.2467 0.2587 0.7357 0.8396
11 0.3229 0.3556 0.5897 0.7253
12 0.4014 0.4455 0.447 0.6229
Lo w, X B, v,
| -
— + =
u . EREREARER ”
\
out X in nxn out x 1 out X n
L,
W, \ ,O-(Yl ) B; Yz
mf ¢ o
m x out out xn mx1 mxn

Figure 11. Feedforward neural network with two dense layers
(L1 and L2) and an activation function (o) in between them.

order linear model was hard-coded in the design matrix,
which also provides a good enough prediction accuracy.

The simulation time of the final hybrid models, the
combination of the correction terms of linear/nonlinear re-
gression with the analytic expressions of equations 1 and
2, is presented in Table 8 for the heat exchanger model,
and in Table 9 for the thermal model of an air-cooled syn-
chronous generator. The hybrid solutions of the heat ex-
changer sub-model achieved similar execution speeds and
are much faster than the numeric solution of the nonlinear
two-point boundary value problem. Similarly, the sim-
ulation time of the thermal model of an air-cooled syn-
chronous generator was significantly reduced by using the
hybrid models.

6 Conclusions

In this paper, the thermal model of the counter-current heat
exchanger that was developed in Lie’, is extended with the
case of temperature dependence in the specific heat ca-

"Lie, B.: Lecture Notes in course FM1015 Modelling of Dynamic
Systems at University of South-Eastern Norway, 2019.
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RMSE in T

RMSE in TS
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30 W0 % W T 7 W El 50 T
Output dimension of the first Dense layer in the FNN Output dimension of the first Dense layer in the FNN

Figure 12. Validation results of nonlinear regression of the
counter-current heat exchanger model. The Y-axis is the aver-
age RMSE for three models, each trained on a random sample
for 10000 epoch. The best fit model achieved an average RMSE
of 0.110°C and 0.435°C for T, and T, respectively.

Table 6. Validation results of nonlinear regression.

Model | Avg. RMSE, °C
order D TS
5 0.7297 0.8757
10 0.309 0.648
15 0.2183 0.6179
20 0.2038 0.5679
25 0.1887 0.5774
30 0.1815 0.5336
35 0.1405 0.4758
40 0.141 0.4881
45 0.1387 0.4947
50 0.1263 0.4752
55 0.1474 0.4625
60 0.1168 0.4534
65 0.1326 0.4652
70 0.1237 0.4566
75 0.1104 0.435
80 0.1207 0.4567
85 0.1365 0.4936
90 0.1756  0.5742
95 0.2621 0.6995
100 0.3765 0.8686

pacities of air and water. The benchmark results showed
a very long simulation time when solving the nonlinear
boundary value problem numerically. To speed up the so-
Iution time, explicit data-driven models were developed
using linear and nonlinear regression. Validation was used
to select the order of the polynomial of the design matrix
and the dimension of the layers in the FNN. However, the
order of the polynomial and the dimension of the layers
were not the only factors that impacts the accuracy of the
models. The accuracy of the models was also affected by
the generated data matrix on which the regression models
were fitted. The generated data matrix should only con-
tain informative data that relates to the model’s objective.
Moreover, the regression models were expressed as a cor-
rection term to the explicit/analytic ideal heat exchanger
model. The hybrid heat exchanger model achieved a good
enough accuracy and faster execution speed compared to
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Table 7. The execution speed of the hybrid solution: linear re-
gression vs nonlinear regression. Here, the polynomial of the
design matrix was generated using a user made function, which
made this comparison not fair. Linear-hybrid model has mean
time 36 (s on a given computer; times are scaled to unity at 1%
row element.

Model Mean time
Hybrid solution (Linear Reg.) 1
Hybrid solution (Nonlinear Reg.) 0.042

Table 8. Simulation time for the heat exchanger model. Linear-
hybrid model has mean time 1.5 (s on a given computer; times
are scaled to unity for 1% row element.

Model Mean time
Hybrid solution (Linear Reg.) 1
Hybrid solution (Nonlinear Reg.) 1.002
Numeric solution 14070

the numeric solution.

It should be observed that the hybrid heat exchanger
model introduced here is based upon the assumption that
there are no unknown model parameters in the heat ex-
changer. In other words: if we want to include the hybrid
heat exchanger model in a model fitting procedure for the
thermal generator model, we can not change the heat ex-
changer parameters, e.g., % A in Table 1 — that would
require a re-training of the correction term.

Future work will include a study on how the correction
term to the analytic heat exchanger can be re-formulated
in order to allow for fitting model parameters such as 7% Ax
without having to re-train the correction term. As part of
this, the value of % will vary with flow rates. Next, the
work reported in (Pandey et al., 2019) will be updated with
this new thermal synchronous generator model with the
more accurate heat exchanger model.
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