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Abstract

The paper considers a model for floor heating in build-
ings, with an electrically heated, stratified water tank, a
circulation loop, a detailed description of heat transport
through the floor, and a simplistic room model. The model
structure is suitable for control of room temperature, and
the paper discusses the use of modern simulation tools
for control-relevant analysis of such models. The stratifi-
cation description contains a non-differentiable buoyancy
term, and two approximations are studied which circum-
vent this problem. The results indicate that a boundary
layer approach is superior to a log-sum-exp approxima-
tion. Important basic control-relevant analysis ideas in-
clude step response (time constants), sensitivity analysis
(parameter identifiability), the system zeros location (at-
tainable performance), and Bode plots (control synthesis).
The paper illustrates how such an analysis can be carried
out using tools such as OpenModelica in combination with
scripting language Julia.

Keywords: thermal building model, heated water tank,
floor heating, model analysis, sensitivity analysis, lin-
earization, control architecture

1 Introduction

Modern floor heating systems utilize “low quality” ther-
mal energy in lukewarm water (30-35°C). To reduce the
overall energy consumption, it is necessary to allow for
rapid temperature changes when occupants leave or ar-
rive, hence a low heat capacity in the distribution system
is desirable. Maximizing the temperature in the buildings
requires low heat transfer coefficients. Building energy
management systems (BEMS) are used to handle the heat-
ing and water distribution.

(Lie et al., 2014) discussed the use of solar heating as-
sisted by electric heating for floor heating, and studied
the use of Model Predictive Control (MPC). In (Johansen
et al., 2019), an improved model of an electric heater was
considered, and compared with experimental data. Specif-
ically, a model of stratification due to (Viskanta et al.,
1977) was introduced, see also (Xu et al., 2014). A more
complex model of stratification is given in (Vrettos, 2016),
with a two stage diffusion predictor and buoyancy correc-
tor step. In (Bhattarai et al., 2020), a minor correction of
the buoyancy term is introduced in reference to (Johansen
et al., 2019), and the system is extended to include a cir-
culation loop for floor heating — with more details about
the floor layers than in (Lie et al., 2014), while excluding
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the solar heating.

Traditional heating systems for buildings often use sim-
ple temperature controllers such as thermostats. It is of in-
terest to also consider and analyze building models from a
more classical control theoretical point of view. Open loop
studies typically include step response tests. Interesting
questions arise related to identifiability of model parame-
ters, where parameter sensitivity plays a key role, (Varma
et al., 1999), (Jayakumar et al., 2011), (Sarmiento Fer-
rero et al., 2006). Model structure and input-output rela-
tions may put restrictions on attainable performance in dy-
namic systems. Essentially, unstable zero dynamics limits
how fast feedback control loops can be made while re-
taining robustness. For linear models, the modes of the
zero dynamics equal the system zeros, (Kwakernaak and
Sivan, 1972), (Lie, 1995), and the performance limiting
zeros are the right-half-plane zeros. Classical linear con-
trol design is often based on linearized approximations
of models, and the Bode plot is a simple presentation of
some dynamic properties for importance in control design,
(Astr@m and Murray, 2008).

The emphasis of this paper is on how to use modern
computer languages to analyze the model, with the ul-
timate purpose of control design. We consider the lan-
guages Julia (Rackauckas and Nie, 2017) and Modelica
(Fritzson, 2015), specifically OpenModelica operated via
the OMJulia API (Lie et al., 2019). The focus is not
on control design, but on analysis tools. The floor heat-
ing model in (Bhattarai et al., 2020) is used in the study.
This model contains a max () function in the description
of stratification, which is unfortunate when linear approx-
imations are sought. Thus, two approximations to the max
function are considered. Basic step responses are used to
find the open loop response. Next, computation of out-
put sensitivity to model parameters is illustrated, together
with model linearization with location of poles and zeros
as well as Bode plots. The paper is organized as follows.
In Section 2, the system under study is presented, and two
approaches to model approximation are presented. In Sec-
tion 3, the original stratification model is compared to the
two approximations. In Section 4, computer tools are used
for model analysis. In Section 5, some conclusions are
drawn.

2 System overview

2.1 Floor heating

Consider a floor heating system for a building, Fig. 1.
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Figure 1. Floor heating system.

The system consists of an electrically heated, stratified
water tank which supplies heated water to a water loop
passing through water pipes embedded in the floor. The
heated floor then provides heating to the room above to
compensate for heat loss to the surroundings. Both floor
temperature and air temperature in the heated room is of
importance for inhabitant comfort. Typically, a floor tem-
perature of ca. 22°C and an air temperature of ca. 20°C
is deemed optimal when in use.

Modern buildings are not in use all the time, and it is
of interest to save energy by reducing temperatures when
a building is empty. To allow for quick reduction and
increase in temperatures, the heat capacity of the floor
should be low. On the other hand, low heat capacity leads
to problems in case of power failure.

The heated water tank is influenced by external signals
in the form of the loop volumetric water flow rate V, the
split range valve signal u, which determines how much
water goes through the heated tank, the ambient tempera-
ture of the heated tank, 7}, and the fraction of full electric
power up that is used to heat the tank. In the model of (Jo-
hansen et al., 2019), the inlet temperature 7; at the bottom
of the tank was also an external signal; in this work, 7; is
a signal that comes from the heated floor subsystem, and
is thus not a free, external input.

The water from the heated tank flows into the water
loop at temperature Tig (the temperature after the split
range valve of the heated tank), and passes through a
lengthy pipe embedded in the floor. The floor pipe is es-
sentially a heat exchanger for transfer of heat to the floor.
From the floor, heat is transferred to the room by convec-
tion and radiation. Finally, the room experiences a heat
loss to the surroundings which is at external ambient tem-
perature 7.

2.2 Buoyancy conductivity approximations
2.2.1 Original stratification expression

The buoyancy conductivity expression ky, is

kyy o< |/ max <—Z,0>,

oY)

or alternatively

aT aT
kpoe V00 0 <0 @
0 2T >
) az_ .

For implementation in Modelica, the formulation in Eq. 1
works fine, while the formulation in Eq. 2 leads to chatter-
ing between the two function branches when the gradient
fluctuates around 0.

If we want to linearize the model in Modelica, things
get even more complex: Modelica does not handle auto-
matic linearization of either the expression in Eq. 2 or that
in Eq. 1. Thus, for analysis purposes, it is of interest to
seek approximations to the above buoyancy conductivity
expressions which allow for linearizing the model by au-
tomatic linearization.

2.2.2 Log-sum-exp approximation

For simplicity, we first consider function

—x, x<0

max (—x,0) = {O R

A common approximation of this max function is the so-
called “log-sum-exp” function, (Lago et al., 2019), which
in a simple version can be posed as

1
max (—x,0) & log (exp (~ ) + exp(4-0))

1
= ﬁlog(l +exp(—ux)).

With increasing U, this approximation becomes better and
better, while still being differentiable. Thus, we can use
the following approximation of the buoyancy conductiv-

1ty:
ky, o< \/:Llog <1—|—exp <_“Z>>’

where L is tuned to give as good approximation as possi-
ble.

There is a potential problem with this approximation for
our use: ﬁlog (1 +exp(—ux)) > 0 for x > 0. Thus, when

%—f — x, we will get a “buoyancy” effect when %—g >0—

when there really is no buoyancy.

3)

2.2.3 Boundary layer approximation

An alternative approach to approximation is to establish a
boundary layer for x € [—3§,0], and use a polynomial tran-
sition from y(—4) to y(0) which simultaneously is dif-
ferentiable at x = —& and x = 0. For simplicity, we ap-

proximate y/max (—x,0) instead of max (—x,0). It can be
found that the following composed function is suitable:

V—x, x< =48

V/max (—x,0) ~ @.(g(g)ug(gf), x€[-5,0]
0, x> 0.

)
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Figure 2. Left panel: comparison of f(x) = y/max(—x,0)
(green line) with log-sum-exp approximation fig (x) =

oell2eXpit) i Fq. 3 (blue, solid: p = 5, dotted: p = 20),
vs. boundary layer approximation fy (x) in Eq. 4 (red, solid:

6 = 0.3, dotted: & = 0.07). Right panel: comparison of deriva-
tives.

2.2.4 Comparison of approximations

Figure 2 illustrates the approximation of \/max (—x,0)
with these two approaches.

Figure 2 illustrates a potential problem with the log-
sum-exp approximation in Eq. 3 in that this approximation
will give a buoyancy effect when %—f > 0 (function fis (x),
blue curve in the left panel Fig. 2 is positive for x > 0),
which is unphysical. The boundary layer approximation
in Eq. 4 (function f) (x), red curve in the left panel) is,
however, zero for x > 0, which is physically correct.

It should be observed that the log-sum-exp approxima-
tion gives a better approximation with tt > 5, but Open-
Modelica fails to linearize the model when p 2 5.

2.3 Transport delay in heating loop

The advection term related to flow of water in the loop of
the heater and the floor, has been approximated by a Padé
approximation as in (Bhattarai et al., 2020):

T(sx=L) 1 NMlexp(—7s)
T(s:x=0) exp(tys) i} exp(s)
1+ Tys =l 1+%S

The advantage of including the lag term +er < is that

this removes the need to differentiate the input signal
T(t;x=0).

3 Simulation with buoyancy approxi-
mations

The heated tank model from (Johansen et al., 2019) has
been corrected as discussed (Bhattarai et al., 2020). Here,
we study the accuracy of the log-sum-exp approximation
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Figure 3. Control inputs up (power fraction to heated tank),
uy (water flow valve opening), and V; (volumetric flow rate in
heating loop).
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Figure 4. Disturbance temperature inputs 7; (influent to heated
tank) and 7' (ambient to tank).

and the boundary layer approximation introduced in Sec-
tion 2.2, when applied to the heated tank. Next, we study
the effect of the approximations on a combined heater and
floor heating loop, as discussed in (Bhattarai et al., 2020).
In all cases, stratification models with 20 discretization
layers are used in the heated tank models.

3.1 Heated tank

The following input signals are used for the heated tank:
Fig. 3 depicts the power input up, the valve input u,, and
the volumetric loop flow rate V.

Figure 4 shows the input temperature 7; to the heated
tank, and the ambient temperature surrounding the heater,
T\

The temperature distribution in the heated tank using
the corrected expression for buoyancy conduction com-
pared to (Johansen et al., 2019), with approximations, is
shown in Fig. 5 when using OpenModelica with solver
DASSL. In Fig. 5, observe in particular that the log-sum-
exp approximation gives a different solution for some in-
ternal heated tank locations, see ellipses I and II in the
figure.
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Figure 6. Temperature distribution in tank with corrected buoy-
ancy conduction + approximations. Model implemented in
Julia, solved via package DifferentialEquations with
solver CVODE_Adams from the Sundials package.

The similar simulations in Julia are depicted in Fig. 6.
It turns out that most Julia DifferentialEquations
solvers struggled with solving the log-sum-exp approxi-
mation, reporting that the system is unstable. The CVODE
solvers of the sundials package handles the problem,

Figure 5. Temperature distribution (7¢: effluent temperture from
heated tank; 7 (zp): temperature at heating element; 7;: influent
temperature to heated tank; 77 temperature at heated tank sen-

sors; Tf inlet temperature to floor heating loop) in tank with cor-
rected buoyancy conduction + approximations. Model imple-
mented in Modelica, solved via OMIJulia using OpenModelica
with default solver DASSL.

though, and the CVODE_Adams solver appears to give the
solution closest to the original formulation with the max
function. Observe that the log-sum-exp approximation in
Julia avoids the problem associated with ellipse I of Fig. 5,
but retains the problem of ellipse II of the OpenModelica

solution. However, for Julia, the expression log (1+x)
can be replaced by an improved function 1loglp (x) when
x is small. When doing so, the problem of ellipse II is
also removed, and the log-sum-exp approximation can be
made virtually indistinguishable from the solution of the
max function in Julia. Still, both the original max formula-
tion and boundary layer approximation allows for the use
of standard solvers, while the log-exp-sum approximation
requires Sundials solvers to find the solution.

Both when using the OpenModelica solver and the Julia
solver, the boundary layer approximation works without
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Figure 7. Temperature distribution in tank with floor loop and
with corrected buoyancy conduction + approximations. Model
implemented in Modelica, solved via OMJulia using OpenMod-
elica with default solver DASSL.

problems, and gives a solution very similar to the original
solution. In summary, the results indicate that the log-
sum-exp approximation is numerically challenging, even
when using such a “poor” value of t as L =5, see Fig. 2.

3.2 Heated tank + floor heating loop

Next, we consider the combined heated tank and floor
heating loop. The inputs are as in Figs. 3—4, except that
the input temperature 7; (Fig. 4) to the heated tank now is
a state, and is computed from the model.

The temperature distribution in the heated tank with
floor loop using the corrected expression for buoyancy
conduction compared to (Johansen et al., 2019) as well
as approximations, are shown in Fig. 7.

Again, Fig. 7 indicates some numeric problem with the
log-sum-exp approximation, see ellipses I and II.

It is also of interest to see whether there are differences
in the floor-room temperatures. The temperatures in the
floor layers and room of the tank with floor loop (origi-
nal buoyancy expression and approximations) are shown
in Fig. 8.
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Figure 8. Temperature distribution in floor layers and room of
heated tank with floor loop (7}: temperature in compartment j
— al: aluminum plate, pq: parquet, r: room, fb: fiber board,
cb: chip board). Model implemented in Modelica, solved via
OMlJulia using OpenModelica with default solver DASSL.
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Figure 9. Step responses in 7}‘ (upper panel) and 7; (lower
panel) to changes in inputs (up: power fraction in heater, u,:
heater bypass fraction, V;: loop volumetric flow rate, T': am-
bient temperature for heated tank, 7,: ambient temperature for
room, i.e., outdoor temperature), starting at steady state.

As seen from Fig. 8, the temperatures in the floor layers
and the room are practically the same, independently of
the buoyancy approximation.

4 Model analysis
4.1 Step response

The response in an output to a step change in an input,
starting from steady state, gives a good idea of time con-
stants in the system. Figure 9 shows the responses in tem-
peratures Tif and T; to step changes in inputs.

As seen Fig. 9, a step change in the heater by-pass frac-
tion (uy) gives an inverse response in both the loop inlet
temperature (Tie) and the room temperature (7;). Inverse
response is intimately related to right half plate (RHP) ze-
ros, and indicate a limitation in how fast the system can
be controlled using this control signal. A similar inverse
response may be seen in the response to V;, while the re-
sponse to up does not have inverse response. Based on
these observations, up is probably the best choice of con-
trol signal.

Step changes in disturbances 7)) and 7 are related to
similar limitations in observers/state estimators, but in that
case, the assessment is more complicated.

4.2 Parameter sensitivity

Sensitivity in output y to a parameter 0 is defined as
g—g, and is informative as to what degree an infinitesimal
change in 6 will change the output y. If % = (, this im-
plies that changing parameter 6 will not change the model
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Figure 10. Sensitivities in floor-room temperatures to infinitesi-
mal changes in parquet conductivity kyq and height of room, A;.

output y at all, hence parameter 6 can not be used for im-
proving the model fit. On the other hand, if % # 0, this
indicates that changing 6 will change the output y and al-
low for improved model fit. The transient change of g—g is
also informative wrt. what parts of the model parameter
0 can be used to improve, e.g., steady state value, time
constants, etc.

Both OMJulia-OpenModelica and the DifferentialE-
quation package for Julia support sensitivity compu-
tations. Here, we illustrate the results of sensitiv-
ity computations in OMJulia-OpenModelica for y =
(T, Tpq: T, Ty, Tev) and 0 = (kpg,h). In the sensitivity
computations, we need to specify inputs. We start with in-
puts u = ( ' T Vi up uy ) given by nominal val-
ues

u*=(5°C 15°C 5L/min 125-107% 1)

at t = 0 and corresponding steady states, and inject a step
change in uy from uy = uj =1touy, = 0.8 attimer = 1 h.
Sensitivities of model £hm are computed numerically via
OMJulia command
julia> sn,sv = sensitivity (fhm, ["kpg", "hr"], [
"Tal", "Tpg", "Tr", "Tfb", "Tcb"])

The results are displayed in Fig. 10.

To properly assess parameter identifiability, one needs
to consider the rank of the sensitivity matrix, see, e.g.,
(Sarmiento Ferrero et al., 20006).

4.3 Poles and zeros

OMJulia, the Julia API to OpenModelica, allows for auto-
matic differentiation for linearization of models. The al-
gorithm does not handle the original buoyancy conduction
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Figure 11. Poles marked with X (red: log-sum-exp approxi-
mation, blue: boundary layer approximation), and transmission
zeros marked with o.

expression due to the non-differentiability of &y, at %—f =0,

but works with the two approximate conductivity expres-
sions. In this section, we consider inputs « and outputs y
defined as:

u= (TS T} Vi up uy )
y=(F T' T T )

with nominal input values
w*=(5°C 15°C 5L/min 125-107% 1).

Linearization of model fhlse is carried out and piped
(1> ) into a Julia state space object sys_1se via OMJu-
lia+Julia ControlSystems command

1 julia> sys_lse = linearize(fhlse) [> x —-> ss/(

Xew.)

When starting the model at steady state for the nominal in-
puts u*, the combined heater + floor heating system gives
a linear approximation with poles and transmission zeros
as in Fig. 11.

As seen, there is some difference in both poles and
transmission zeros of the two approximations. The right
panel of Fig. 11 clearly indicates that both buoyancy ap-
proximations exhibit right-half-plane zeros in the complex
plane, which indicates limitations on how fast the system
can be controlled. These right-half-plane zeros are due to
advection in the floor heating loop, and the Padé approx-
imation that has been applied. It is difficult to see from
Fig. 11 whether all poles of the system lie in the left-half-
plane of the complex plane, but the simulations show that
the system in fact is stable.

The precise location of transmission zeros gives ad-
ditional information related to that of a possible inverse
response found through step responses, see, e.g., (Lie,
1995). Observe that the two buoyancy conductivity ap-
proximations give different results wrt. poles and zeros. It
is believed that the boundary layer approach is more accu-
rate than that of the log-sum-exp approach.
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Figure 12. Bode plot of transfer function from outdoor temper-
ature 7 to room temperature T;.
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Figure 13. Bode plot of transfer function from heater split range
valve signal uy to parquet temperature Tpq.

4.4 Bode plots

It is of interest to also compare the Bode plots from u to y
of the linear approximations of the two buoyancy conduc-
tion approximations. In this case, we consider the follow-
ing inputs u and outputs y:

u=(TF Vo uy)

y:(TiZ Toq Tr)

The reason why we do not consider input up is that it turns
out that the outputs are insensitive to up. The following
selected Bode plots are representative of the similarity of
the two approximations. Transfer function T% (s), Fig. 12.

Observe that the two approximations are overlapping.

Transfer function % (s), Fig. 13.

Bode plots are standard tools for tuning SISO PID con-
trollers. The two plots in Figs. 12-13 are representative
of the variation in similarity between Bode plots from the
boyancy conductivity approximations; for a real control
design, the Bode plot from up to 7; would be more rel-
evant, but controller design is not the main focus of this
paper; rather the focus is on tools to analyze models.
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5 Conclusions

A model for floor heating of buildings is studied wrt. con-
trol relevant properties. The main emphasis is not on the
analysis itself, but rather on the use of modern simulation
tools to carry out such analysis. For a more realistic anal-
ysis, a better balanced system should be considered (size
of heater vs. heat loss in room) with improved descrip-
tion of the living space (e.g., more rooms, thermal mass of
furniture, ventilation, etc.).

The results indicate the importance of a suitable model
description which is differentiable (stratification): this is
important both for linearized analysis and controller de-
sign, but a proper choice of approximation will also al-
low for more flexibility in choice of differential equation
solvers. The log-sum-exp approximation is locally un-
physical, which probably also is the reason why this ap-
proximation requires very good solvers.

The results also indicate the ease at which control anal-
ysis can be carried out. Step responses are important for
assessing overall open loop time constants, as well as indi-
cating the presence of inverse response/“‘unstable” system
zeros. Sensitivity analysis is important for assessing pa-
rameter identifiability. The location of open loop poles
is related to open loop time constants, while system ze-
ros give crucial information about how fast a closed loops
system can be made. Finally, a Bode plot is often used for
simple design of linear controllers.

In reality, temperature control in buildings is often done
using thermostats and other nonlinear controllers. Still, it
is of interest to consider how a more advanced controller
— even a linear one — can be utilized for improved use of
energy in building temperature control. The methods dis-
cussed in this paper constitute a first step in such a control
design.
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