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Abstract
Energy management of small-scale renewable energy
systems (microgrid) requires control of the energy
consumption. Commercial buildings are sized using
energy consumption criteria from the building
standards. The energy consumption of a building
depends on a number of dynamic factors, including
thermal loss, building climate control, and building
utilization. This paper presents a simple model for
predicting the thermal loss of a building. The basic
simulation module is a single room model where the
outer walls and windows are exposed to the ambient
conditions without sun influx. We model the thermal
loss based on building design data and validate the
model using operational data for an actual low-energy
building. The model prediction accuracy is within +/-
1°C for up to 7 days when predicting thermal losses in
the building construction.

Keywords:     energy management, powerhouse, thermal
loss prediction, Matlab

1 Introduction
A powerhouse is a building that produces more electric
power than it consumes during the building lifecycle,
including construction and decommissioning/disposal.
Sustainability conscious real estate asset owners are
interested in the concept and Norway has seen a rise in
the construction of powerhouses in the past 4-5 years.

Powerhouses have large solar PV systems installed at
the roof. At its maximum, the solar PV systems generate
significantly more energy than consumed by the
building at any time. In addition, the maximum power
production occurs in the summer season when the
heating demand is at its yearly minimum. Heating is the
main energy consumer of commercial buildings.
Thermal losses drive the heating demand. In our
research, we explore models for predicting thermal
losses in a low-energy building. The model will be used
as part of a digital twin of the building’s energy system.
Our overall goal is to develop practices for energy
management of powerhouses.

The digital twin is a dynamic virtual model of a
system that incorporates business, contextual, and
sensor data from physical systems into the virtual
system model (Madni et al., 2019). A true digital twin is
different from other models because it includes the
specific instance(s) that reflects the characteristics of the
physical twin, in real time. Madni et al. (2019) sees the
digital twin as promising technology, particularly in the

building and real estate industries, because of real time
access to system data that are essential for energy
management (Madni et al., 2019).

Research papers suggest different approaches for
assessing thermal performance of buildings.
(Kildsgaard et al., 2013; Makaka, 2015; Rohdin et al.,
2014) are relevant examples for low-energy buildings
and passive houses. Both physical models and machine
learning models are available in literature. Mendes et al.
(2001) give a first principle (physical model) of the
thermal loss. In the digital twin, we need a model that
integrates the virtual and physical world. We need to
base our model on simple approaches because
calculation speed will be an issue due to the large
amount of data in the system and the need for real time
monitoring and prediction.

Lie (2019) defines the hybrid model as a combination
model. A hybrid, data driven model improves the fit
between an imperfect physics-based model and
(inherently limited) experimental data. The hybrid
model is particularly interesting for digital twin
applications. To ensure fast response of the digital twin,
it is essential that the model is as simple as possible.

This paper outlines a simple, first principle based
model for calculating the thermal losses of a low-energy
building. The model predicts the energy losses from the
building when exposed to varying ambient conditions.
We base our model on the design assumptions of the
building and we validate the model using operational
data from the building. We ask in our research how well
a simple energy balance model can predict the thermal
losses of a real building if we base the model on the
design parameters of the building.

2 Vestsiden Middle School Case
We use Vestsiden middle school in Kongsberg as our
case. Kongsberg Kommunale Eiendom (KKE)
completed the building construction in August 2019.
The school is a low-energy house. Power and heat is
supplied through geothermal heat and solar power
systems. The national electric grid connects to the
building. Solar power is produced by 1054 solar PV
panels installed at the roof. Excess energy is stored in a
battery and consumed at night. KKE plans to install an
electrolyzer and hydrogen storage system for seasonal
storage. A fuel cell will generate electric power from the
hydrogen during winter. There are currently no
guidelines for dimensioning and operation of a
hydrogen loop in a hybrid renewable energy system for
buildings (Bredesen, 2019).
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2.1 Construction Standards 
The design of commercial buildings in Norway comply 
with NS-EN ISO 52000 (energy performance standard) 
and NS3701 (passive house standard). The standards 
allow for assessment of the power demand of a building. 
The designers use the standards to assess if the building 
design complies with the regulations. The standards 
provide a specification basis for the products and 
construction elements. 

Special purpose simulation programs assist the 
building designers in the calculation of energy 
consumption of the building at various ambient 
conditions throughout a typical year (SIMIEN, 2020). 

The construction company adjusts the heat loops and 
ventilation flow rate so that the as-built building 
complies with the design intent. The building 
constructor sets the water valves and ventilation 
dampers during commissioning. 

2.2 Real Time Measurements 
The Supervisory Control and Data Acquisition 

System (SCADA) monitors and controls the building in 
multiple zones. More than one thousand instruments are 
installed in the building. The data sample rate depends 
on the PLC, and is typically 1 minute. At a minimum, 
the controller measures air temperature, carbon dioxide 
level, and ventilation flow rate in each zone. The 
SCADA system sends the data to a database located at 
USN Campus Kongsberg. 

We measured the actual air temperature in the room 
and the ambient temperature during the months of 
March and April 2020. The four weeks from 18th of 
March to 16th of April 2020 are particularly interesting. 
Due to the 2020 pandemic, the school was in lockdown 
and there were no people in the building during this 
time. 

3 Design Basis and Assumptions 
To predict the thermal losses and verify with actual 
room temperature measurements, we need to understand 
the energy balance of the building. The outside air 
temperature and the radiation from the sun affect the 
building, Figure 1. The basic simulation module is a 
single room model where the outer walls and windows 
are exposed to the ambient conditions. 

We do not consider the effect of solar energy influx 
in this work. The room used for model verification is 
facing North-West with the horizon at 315 degrees. 

Multiple effects influence the energy balance at a 
given time. Figure 2 shows a sketch of the contributors 
to the energy balance of a room. We combine the most 
relevant thermodynamic processes in our model: a) 
thermal losses of walls, windows and roof, b) thermal 
mass of furniture, and c) heat flow contributed through 
air ventilation, floor-heating, radiator heating, and 
people (users).   

3.1 Walls, Windows, and Roof 
The energy performance standard governs the building 
design. We use the same approach in our model and we 
use the overall heat transfer coefficient, U-factor, and 
heat storage capacities applied in the building design. 
The data are available from the building owner. With 
this approach, we do not need the building construction 
details like the composite wall design or insulation 
material. Using the design basis allows us a direct 
comparison with the design basis.  

 

Figure 1. Thermal loss model of building 

 

 
Figure 2. Energy sources and thermal losses in the room 

The outer wall of the room is 22m2 of which 55% is 
window surface. The floor and roof surface is 63 m2. We 
assume zero heat transfer across the inner walls of the 
building. There are no doors exposed to ambient air. 

In our work, we use the following building design 
parameters: 
Heat transfer coefficient (U-factor) 

 Outer wall:  0.17 W/m2K 

 Roof:   0.13 W/m2K 

 Windows:   0.85 W/m2K 
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Heat capacity (h): 

 Outer wall:  12 Wh/m2K 

 Roof:   10 Wh/m2K 

 Window: 3 Wh/m2K 

3.2 Furniture 
Changes in the air temperature will change the furniture 
temperature. Depending on the furniture mass, this can 
cause a shift in the modeled air temperature compared 
with measurement.  

For design basis, we assume 30kg of furniture per 
student (900 kg total for the room in this work). We 
assume a specific heat capacity of 1000J/kgK for the 
furniture.  

3.3 Ventilation  
The ventilation provides a flow of fresh air to the room. 
The airflow rate (mass based) at inlet to the room is the 
same as the airflow rate leaving the room (per mass). 
The control system measures the volumetric airflow 
rate. This is a rudimentary measurement based on the 
valve position. During normal use, the valve position is 
adjusted automatically based on the actual demand 
regulated by the temperature setting of the room and the 
air quality (local measurements of carbon dioxide). 

The flow rate to the room is zero when the ventilation 
system is shut down and 1300 m3/hr at full flow. During 
normal operation, the control system schedule sets 
ventilation flow rate.  

We assume air as an ideal gas with constant specific 
heat capacity (isochoric) of 717.3 J/kgK and a density of 
1.2 kg/m3 for the air. 

3.4 Floor-heating 
The building floor-heating is installed in the basement, 
shared rooms, library and the main hall. Water circulates 
in piping embedded in the floor. A geothermal heat 
pump heats the water. Electric heaters allow for higher 
temperatures during the cold season. The water flow rate 
is per design and not adjusted after commissioning 

There is no floor-heating in the room used in our 
model and the flow rate is therefore set to zero in this 
work. 

3.5 Radiator 
Most rooms have one radiator. Water circulates through 
the radiator and the heat is released through natural 
convection to the air. Each radiator can provide up to 
1400W heat to the room. The actual heat release 
depends on the valve setting in the water loop. The water 
flow rate is not measured.  

The energy balance calculated at the start condition 
of the simulation determines the heat input to the room. 
We use a constant radiator heat input of 290 W in this 
work, which is the initial state equilibrium of the room 
for the measurements used in here. 

3.6 People 
People using the room will release heat to the 
surroundings. The energy performance standard 
recommends a heat release of 12 W/m2 per person for 
design of school buildings. The effect of people is not 
included in this paper because we collected the building 
data for a time where there were no people in the 
building.  

4 Thermal Model 
We use MALAB Simulink, v.10.0 (R2019b) for the 
simulations. Our system is an open system with 
conservation of mass (air). From the first law of 
thermodynamics, assuming zero work, we find that the 
change in internal energy from the initial state 0 to the 
final state is equal to the change in heat (Q) in the 
system: 

𝐸௔௜௥ − 𝐸௔௜௥଴ = ∫ 𝑄 𝑑𝑡   (1) 
where 𝐸௔௜௥ is the energy of the air in the room and 0 
indicates the initial state. 

The net heat transfer to the room is the sum of heat 
flowing into or out of the system.  

The air temperature at the initial state is calculated 
from the internal energy: 

𝑇௥௢௢௠ =
ாೌ೔ೝ

௖௩ೌ೔ೝ∗ఘೌ೔ೝ∗௏ೝ೚೚೘
  (2) 

Where 𝑐𝑣௔௜௥ is the isochoric specific heat capacity of the 
air; 𝜌௔௜௥ is the density of air, assumed constant;  𝑉௥௢௢௠ 
is volume of the room), Figure 3. 

 

Figure 3. Room temperature calculation in MATLAB 

4.1 Wall, Window and Roof 
The wall is modelled by the thermal resistance, eq.3, 

Figure 4: 

𝐸௪௔௟௟ = ∫ 𝑄௪௔௟௟ 𝑑𝑡 + 𝐸௪଴   (3) 
We base the wall model on Fourier’s law of heat 

conduction where the heat transfer through a material is 
proportional to the (negative) gradient in the 
temperature and to the area perpendicular to that 
gradient. The U-factor determines the heat transfer. 
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𝑞௖௢௡ௗ௨௖௧௜௢௡ = (𝑇௪௔௟௟ − 𝑇௢௨௧௦௜ௗ௘) ∗ 𝑈௪௔௟௟ ∗ 𝐴௪௔௟௟ (4) 
 
This heat flow does not directly interact with the 

room but reduces the temperature of the wall that again 
increases the heat flow through the convection model.  

We include the heat (storage) capacity of the material 
in our model to allow for a delay in the development of 
the air temperature inside the room: 

𝑞௪௔௟௟ = (𝑇௥௢௢௠ − 𝑇௪௔௟௟) ∗ ℎ௪௔௟௟ ∗ 𝐴௪௔௟௟  (5) 
where , 𝐴௪௔௟௟ is the surface area of the outer wall. 

This is as well the interface for this sub model to the 
central room model, as it transfers heat between the air 
in the room and the thermal mass of the wall.  

 

Figure 4. Wall model in MATLAB 

The windows and roof models are analogous to the 
wall model with different properties as listed in Section 
3.1.  

We use room air temperature to connect the sub-
models as seen in Figure 5. The air temperature 
calculation converges to steady state at each time step. 

4.2 Furniture 
The furniture model uses the thermal mass model 

since there is no sufficient data for a convection-based 
model and no heat conduction is taking place. See 
Figure 5. 

4.3 Ventilation 

The ventilation model uses volumetric flowrate 𝑉̇௩௘௡௧ 
and initial air temperature 𝑇௩௘௡௧ to determine the heat 
flow of the incoming air to the room: 

𝑞௩௘௡௧_௜௡ = 𝑇௩௘௡௧ ∗ 𝑐௔௜௥ ∗ 𝜌௔௜௥ ∗ 𝑉̇௩௘௡௧   (6) 
 
Figure 6 shows the model of the ventilation at the 

inlet to the room, the heating and the heat input from 
people. 

Because air pressure inside the room is constant, the 
air mass flow from the room is the same as at the inlet. 
The heat flow of the outgoing air from the room 
becomes (air density assumed constant): 

𝑞௩௘௡௧_௢௨௧ = 𝑇௥௢௢௠ ∗ 𝑐௔௜௥ ∗ 𝜌௔௜௥ ∗ 𝑉̇௩௘௡௧  (7) 

where the temperature of the outgoing air is the 
temperature of the bulk air temperature in the room. The 
model is shown in Figure 5 (purple box). 

 

 

Figure 5. Thermal models connected by air temperature 

 

 
Figure 6. Ventilation flow model in MATLAB 

4.4 Floor-heating 
The floor-heating model is based on the difference in 
water temperature as measured at the inlet and outlet of 
each building zone. The water flow rate is constant.  

𝑞௙௟௢௢௥ = 𝑐௪௔௧௘௥ ∗ 𝜌௪௔௧௘௥ ∗ 𝑉̇௪௔௧௘௥ ∗ (𝑇௜௡ − 𝑇௢௨௧)    (8) 

Floor-heating is set to zero in this paper. 

4.5 Radiator 
We use a constant heat input of 290W from the radiator 
to the air; see Figure 6 and Section 3.5. 

4.6 People 
The heat released by the users is not included in this 
work; see Section 3.6. 
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5 Model Validation 
We validate the model using actual data measurements 
from a room in the school building. We use two different 
data series:  
1. Ventilation system fully closed (due to pandemic 

lockdown), 
2. Ventilation system operated according to the standard 

building control scheme (with low flow during night).  
The SCADA samples ambient temperature, room air 

temperature, and ventilation airflow rate at 1-minute 
intervals for both data series.  

We use the measured ambient temperature and the 
ventilation airflow rate as input to the model and 
simulate the room air temperature. In the final digital 
twin, we will use a temperature forecast. The results 
presented in this paper are therefore assuming a perfect 
forecast. 

Finally we compare the simulated air temperature to 
the measured air temperature, see Figure 7 for model. 

 

Figure 7. Room Temperature Validation 

6 Results and Discussion 
Figure 8 shows the simulated and measured room 
temperature for the case of the shutdown ventilation 
system. The ventilation airflow rate was zero during the 
time and the ambient temperature varies from -3°C to 
+14°C in diurnal cycles (14 days).  

The thermal loss model predicts the response of room 
air temperature to the variation in ambient temperature. 
Figure 8 shows fair prediction accuracy with a 
maximum deviation of +/-1°C between the simulated 
and the measured room temperature. After 7 days, the 
simulation starts to deviate from the measured data and 
the prediction is less reliable. 

The prediction accuracy remains high despite the 
coarse resolution in the ambient air temperature 
measurement used as input to the model. The ambient 
temperature instrumentation installed in the building is 
accurate. The reduced resolution and observed data 
discretization is due to data truncation in the 

measurement system. We recommend improving this 
for the future. 

 

Figure 8. Room temp prediction with closed ventilation 

Figure 9 shows the simulated and measured room 
temperature for the case with the ventilation system in 
normal operation.  The ambient temperature varies from 
-3°C to +28°C in diurnal cycles (14 days). The 
ventilation airflow (Figure 10) is operating during 
daytime on the weekdays and fully closed during the 
weekend. The ventilation air temperature is constant for 
the full simulation. 

The prediction accuracy of Figure 9 is reduced 
significantly compared to Figure 8. The model is not 
able to predict the behavior for more than 2 to 3 days. 
The simulation assumes a constant ventilation air 
temperature. In reality, the air temperature changes 
within the limits set in the building control system. This 
effect is not included in the simulation.  

 

 

Figure 9. Room temp prediction, ventilation running in 
normal operation 
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Figure 10. Ventilation air flow rate applicable to Fig 9 

7 Conclusions and Further work 
Low-energy buildings have significant heat loss to the 
surroundings. This causes diurnal temperature variation 
inside the building and drives the energy consumption. 
We search for a simple model to predict the thermal 
losses of a low-energy building. We will use the model 
to predict the energy consumption of the building for 
short time periods (up to 7 days). 

Our model is based on a simple method of energy 
balance combined with heat conduction. The model data 
are based on the building design data. The model is 
validated using real data from the same building. 

We tested the model based on real conditions over a 
14-day period with and without ventilation air entering 
the building. The model is accurate within +/-1°C for 7 
days prediction for cases where the ventilation system is 
off.  

For simulation with the ventilation system in normal 
operation, the model predicts the change in room 
temperature within an accuracy of  +/-1°C for 2 days. 
Additional accuracy for longer periods may require 
input of the ventilation air temperature. This should be 
checked in future work. 

Future work should provide qualitative measures for 
the error between the measured and the predicted room 
temperature. This will help our understanding of the 
prediction accuracy. 

We will extend the model to predict the effect of solar 
influx. Solar radiation is likely to affect the temperature 
of the walls and may result in a different thermal loss 
from the building. 

Future models should verify the dynamic behavior of 
the building. The simplistic approach taken in this work 
is a possible oversimplification, and can lead to serious 
errors if not closely monitored. 
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